
Problem set 3
Math 207A, Fall 2011

Solutions

1. For each of the the following systems, find the equilibria and their stability.
Determine what bifurcations occurs, sketch the bifurcation diagram, and
sketch the qualitatively different phase lines:

(a) xt = µ− x2 + x4; (b) xt = µx+ x3 − x5; (c) xt = µx− ex.

Solution.

• (a) There is a subcritical saddle-node bifurcation at (x, µ) = (0, 0) and
supercritical saddle-node bifurcations at (x, µ) = (±1/

√
2, 1/4).

• (b) There is a subcritical pitchfork bifurcation at (x, µ) = (0, 0) and
supercritical saddle-node bifurcations at (x, µ) = (±1/

√
2, 1/4).

• (c) See Example 2.12 in the notes.

See the linked pdf file for the sketches.



2. (a) Consider a pair of rigid rods of length L connected by a torsional
spring with spring constant k that resists bending. If the rods are subject
to a compressive force λ, and x is the angle of the rods to the applied force,
explain why

V (x) =
1

2
kx2 + 2λL(cosx− 1)

is a reasonable expression for the potential energy of the system.

(b) Show that equilibrium solutions such that V ′(x) = 0 satisfy the equation

x− µ sinx = 0

where µ > 0 is a suitable dimensionless parameter. Find and classify the
bifurcation point on the branch x = 0 and give a physical interpretation.
Sketch the behavior of the potential V (x) as µ passes through the bifurcation
value.

Solution

• (a) The potential energy of the spring is

Vspring(x) =
1

2
kx2

and the work done on the rods by the external force (Force×Distance)
is

Vforce(x) = 2λL(1− cosx).

Then
V (x) = Vspring(x)− Vforce(x).

• (b) We have

V ′(x) = kx− 2λL sinx = k (x− µ sinx) , µ =
2λL

k
.

So if V ′(x) = 0, then x = µ sinx. Note that k has dimensions of energy
(the angle x is dimensionless) as does λL, so µ is dimensionless.

• The necessary condition for a bifurcation point is

d

dx
(x− µ sinx) = 1− µ cosx = 0.

So an equilibrium bifurcation off the branch x = 0 can occur only if
µ = 1.



• To Taylor expand (x, µ) about (0, 1) we write

x = x1 + . . . , µ = 1 + µ1 + . . . .

Then

x− µ sinx = x1 − (1 + µ1) sinx1 + . . .

= x1 − (1 + µ1)

(
x1 −

1

6
x31 + . . .

)
= −µ1x1 +

1

6
x31 + . . . .

Thus, near the bifurcation point we have to leading order that

µ1x1 =
1

6
x31

corresponding to a supercritical pitchfork bifurcation.

• As µ passes through zero, the potential V (x) changes from one with a
single minimum at x = 0 to a bistable potential with two minima on
either side of the origin and a maximum at x = 0.



3. (a) A model of a fishery with harvesting is

Nt = µN

(
1− N

K

)
− HN

A+N

where N(t) is the population of fish at time t and µ, K, H, A are positive
parameters. Explain why this is a reasonable model and give a biological
interpretation of each of the parameters.

(b) Show that the ODE can be put in dimensionless form

xt = x(1− x)− hx

a+ x

where t is a suitably rescaled time and a, h are dimensionless parameters.
Give expressions for a, h in terms of the original dimensional parameters.

(c) Carry out a bifurcation analysis of the ODE in (b). Discuss the implica-
tions of your results for the original fish-harvesting problem.

Solution

• (a)The ODE has the form

Nt = µN

(
1− N

K

)
− f(N), f(N) =

HN

A+N
.

• The first term µN (1−N/K) describes logistic growth of the fish pop-
ulation in the absence of harvesting, where µ is the maximum growth
rate and K is the carrying capacity of the system.

• The second term f(N) gives the rate at which fish is harvested as a
function of the population N . Note that f(N) is a monotone increasing
function of N . For populations N that are much less than A, the
harvesting rate f(N) ∼ νN is proportional to the available catch N ,
with rate constant

ν =
H

A
.

For populations much greater than A, the harvesting rate f(N) ap-
proaches H. Thus, H is the maximum rate at which fish is harvested,
even if an unlimited catch is available, while A is a measure of the fish
population at which fish is harvested at a rate that is of the same order
of the maximum rate e.g. f(A) = H/2.



• Note that if P denotes a unit of population (e.g. tonnes of fish) and T
denotes a unit of time (e.g. years), then the parameters have dimensions

[µ] =
1

T
, [K] = P, [H] =

P

T
, [A] = P.

• (b) Define dimensionless variable based on the logistic growth param-
eters,

x =
N

K
, t̃ = µt.

Then

xt̃ = x(1− x)− hx

a+ x
, h =

H

µK
, a =

A

K
.

Note that h, a are dimensionless.

• (c) The equilibria satisfy

F (x; a, h) = 0, F (x; a, h) = x(1− x)− hx

a+ x
.

One solution, for all values of a, h, is

x = 0.

The other solutions are

x = x̄±, x̄± =
1

2

{
1− a±

√
(a+ 1)2 − 4h

}
.

• There is a saddle-node bifurcation at 4h = (a+ 1)2, with two solutions
appearing for

h <
1

4
(a+ 1)2

These solutions appear at positive values if a < 1 and at a negative
values if a > 1 (which are not relevant to the population problem).

• If a 6= 1, one of the solution branches x̄± crosses the branch x = 0 at
h = a, and there is a transcritical bifurcation at this point.



• If h, a = 1, then the saddle-node bifurcation and the transcritical bi-
furcation points coincide. Both branches x± appear from x = 0 at
(x, h, a) = (0, 1, 1) as one crosses the line h = a transversely in the
direction of increasing a, and there is a pitchfork bifurcation at that
point.

• We have

Fx(x; a, h) = 1− 2x− ha

(a+ x)2
.

• The equilibrium x = 0 is stable if Fx(0; a, h) < 0 or h/a > 1 and
unstable if h/a < 1. Note that

h

a
=
ν

µ

is the ratio of the harvesting rate constant to the growth constant.
Thus x = 0 is stable if the per-capita harvesting is greater that the
maximum growth rate, in which case a low fish population cannot be
sustained.

• See the linked pdf file for sketches of the various phase lines as a function
of the parameters (a, h).


