Problem Set 4

Math 207A, Fall 2011
Due: Wed., Oct. 26

1. Newton's method for the iterative solution of the scalar equation $f(x)=0$ is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

If $f(x)=x^{2}-2$, show that this equation becomes

$$
x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}} .
$$

What are the fixed points of this system? Determine their stability. Compute x_{4} numerically if $x_{0}=3$.
2. Find the fixed points of the system

$$
x_{n+1}=-\frac{\mu}{2} \tan ^{-1} x_{n}
$$

and determine their stability. Show that a period-doubling bifurcation occurs at $\mu=2$. Is the resulting period-two orbit stable or unstable?
3. Consider the discrete dynamical system on the circle for $x_{n} \in \mathbb{T}$

$$
x_{n+1}=x_{n}+\mu \quad(\bmod 2 \pi)
$$

corresponding to rotation by an angle $\mu \in \mathbb{T}$. Describe the structure of the orbits and how they depend on μ.
4. Carry out numerical experiments for iterations of the logistic map

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

where $1 \leq \mu \leq 4$ and $0 \leq x_{0} \leq 1$. (You can write your own program or use the MATLAB script provided on the course website.)

