
Problem set 4
Math 207A, Fall 2011

Solutions

1. Newton’s method for the iterative solution of the scalar equation f(x) = 0
is

xn+1 = xn −
f(xn)

f ′(xn)
.

If f(x) = x2 − 2, show that this equation becomes

xn+1 =
xn
2

+
1

xn
.

What are the fixed points of this system? Determine their stability. Compute
x4 numerically if x0 = 3.

Solution

• For f(x) = x2 − 2, we have

xn+1 = xn −
x2n − 2

2xn
=
xn
2

+
1

xn
.

• Fixed points x satisfy

x = F (x), F (x) =
x

2
+

1

x
,

which implies that x2 = 2 or x = ±
√

2.

• We have

F ′(x) =
1

2
− 1

x2
,

so F ′(±1/
√

2) = 0. Since this has absolute value less than one, both
fixed points are asymptotically stable. In fact, since F ′ = 0 at the
fixed points, we get very rapid, quadratically nonlinear convergence of
nearby iterates to the fixed point.



• We have

F (3) = 1.833333 . . . ,

F (1.833333 . . . ) = 1.462121 . . . ,

F (1.462121 . . . ) = 1.414998 . . . ,

F (1.414998 . . . ) = 1.41421378 . . . .

The forth iterate already agrees to six decimal places with
√

2 =
1.41421356 . . . .



2. Find the fixed points of the system

xn+1 = −µ
2

tan−1 xn

and determine their stability. Show that a period-doubling bifurcation occurs
at µ = 2. Is the resulting period-two orbit stable or unstable?

Solution

• The fixed points satisfy

x = −µ
2

tan−1 x

One solution branch is x = 0, defined for all values of µ. We can’t solve
for the other fixed points explicitly, but by looking at the intersection
of the graphs

y = − 2

µ
x, y = tan−1 x

we see that there are two other fixed points x = ±x̄(µ) for µ < −2,
where x̄(µ) → π/2 as µ → −∞. For µ ≥ −2, x = 0 is the only fixed
point.

• Writing the equation as xn+1 = f(xn;µ) where

f(x;µ) = −µ
2

tan−1 x,

we have

fx(x;µ) = −µ
2

1

1 + x2
.

• We have
fx(0;µ) = −µ

2

so x = 0 is asymptotically stable for |µ| < 2 and unstable if |µ| > 2.

• To determine the stability of the other fixed points (which have the
same stability since f is an odd function of x) note that

fx (x̄(µ);µ)→∞ as µ→ −∞.

One can check that f(x̄, µ) 6= 1 for µ < −2, so fx(x̄, µ) > 1 by conti-
nuity. The fixed points are therefore unstable.



• The multiplier fx(0;µ) passes through 1 at µ = −2, and there is a
subcritical pitchfork bifurcation of fixed points at (x, µ) = (0,−2), as
shown by the previous solution for the fixed points of f .

• To determine the local behavior of the bifurcation at (x, µ) = (0, 2), we
Taylor expand about this point. Writing µ = 2 + µ1, we get

f(x, µ) = −
(

1 +
1

2
µ1

)(
x− 1

3
x3 + . . .

)
= −

(
1 +

1

2
µ1

)
x+

1

3
x3 + . . .

and

f 2(x, µ) = −
(

1 +
1

2
µ1

)[
−
(

1 +
1

2
µ1

)
x+

1

3
x3 + . . .

]
+

1

3

[
−
(

1 +
1

2
µ1

)
x+

1

3
x3 + . . .

]3
+ . . .

= (1 + µ1)x−
2

3
x3 + . . .

• Thus f 2 has a supercritical pitchfork bifurcation at (0, 2), and f has
a supercritical period-doubling bifurcation in which a stable periodic
orbit appears above µ = 2. The points on the orbit are fixed points of
f 2; they are given approximately by

x = ±
√

3(µ− 2)

2
+ . . . .



3. Consider the discrete dynamical system on the circle for xn ∈ T

xn+1 = xn + µ (mod 2π)

corresponding to rotation by an angle µ ∈ T. Describe the structure of the
orbits and how they depend on µ.

Solution

• The orbit structure depends on whether µ is a rational or irrational
multiple of 2π.

• If
µ

2π
=
p

q
∈ Q

where p, q are relatively prime, then every orbit is periodic with mini-
mal period q.

• If
µ

2π
/∈ Q

then every orbit consists of a countably infinite sequence of distinct
points. One can show that every orbit is dense in T and equidistributed
(Weyl’s theorem).



4. Carry out numerical experiments for iterations of the logistic map

xn+1 = µxn(1− xn)

where 1 ≤ µ ≤ 4 and 0 ≤ x0 ≤ 1. (You can write your own program or use
the MATLAB script provided on the course website.)

Solution

• You should see a sequence of period doubling bifurcations, followed by
chaotic behavior. Inside the chaotic region, there are ‘windows’ with
stable period 3 orbits. See the text for further details.


