Problem set 4

Math 207A, Fall 2011
Solutions

1. Newton's method for the iterative solution of the scalar equation $f(x)=0$ is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

If $f(x)=x^{2}-2$, show that this equation becomes

$$
x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}} .
$$

What are the fixed points of this system? Determine their stability. Compute x_{4} numerically if $x_{0}=3$.

Solution

- For $f(x)=x^{2}-2$, we have

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-2}{2 x_{n}}=\frac{x_{n}}{2}+\frac{1}{x_{n}} .
$$

- Fixed points x satisfy

$$
x=F(x), \quad F(x)=\frac{x}{2}+\frac{1}{x}
$$

which implies that $x^{2}=2$ or $x= \pm \sqrt{2}$.

- We have

$$
F^{\prime}(x)=\frac{1}{2}-\frac{1}{x^{2}}
$$

so $F^{\prime}(\pm 1 / \sqrt{2})=0$. Since this has absolute value less than one, both fixed points are asymptotically stable. In fact, since $F^{\prime}=0$ at the fixed points, we get very rapid, quadratically nonlinear convergence of nearby iterates to the fixed point.

- We have

$$
\begin{aligned}
F(3) & =1.833333 \ldots \\
F(1.833333 \ldots) & =1.462121 \ldots \\
F(1.462121 \ldots) & =1.414998 \ldots \\
F(1.414998 \ldots) & =1.41421378 \ldots
\end{aligned}
$$

The forth iterate already agrees to six decimal places with $\sqrt{2}=$ 1.41421356....
2. Find the fixed points of the system

$$
x_{n+1}=-\frac{\mu}{2} \tan ^{-1} x_{n}
$$

and determine their stability. Show that a period-doubling bifurcation occurs at $\mu=2$. Is the resulting period-two orbit stable or unstable?

Solution

- The fixed points satisfy

$$
x=-\frac{\mu}{2} \tan ^{-1} x
$$

One solution branch is $x=0$, defined for all values of μ. We can't solve for the other fixed points explicitly, but by looking at the intersection of the graphs

$$
y=-\frac{2}{\mu} x, \quad y=\tan ^{-1} x
$$

we see that there are two other fixed points $x= \pm \bar{x}(\mu)$ for $\mu<-2$, where $\bar{x}(\mu) \rightarrow \pi / 2$ as $\mu \rightarrow-\infty$. For $\mu \geq-2, x=0$ is the only fixed point.

- Writing the equation as $x_{n+1}=f\left(x_{n} ; \mu\right)$ where

$$
f(x ; \mu)=-\frac{\mu}{2} \tan ^{-1} x
$$

we have

$$
f_{x}(x ; \mu)=-\frac{\mu}{2} \frac{1}{1+x^{2}} .
$$

- We have

$$
f_{x}(0 ; \mu)=-\frac{\mu}{2}
$$

so $x=0$ is asymptotically stable for $|\mu|<2$ and unstable if $|\mu|>2$.

- To determine the stability of the other fixed points (which have the same stability since f is an odd function of x) note that

$$
f_{x}(\bar{x}(\mu) ; \mu) \rightarrow \infty \quad \text { as } \mu \rightarrow-\infty .
$$

One can check that $f(\bar{x}, \mu) \neq 1$ for $\mu<-2$, so $f_{x}(\bar{x}, \mu)>1$ by continuity. The fixed points are therefore unstable.

- The multiplier $f_{x}(0 ; \mu)$ passes through 1 at $\mu=-2$, and there is a subcritical pitchfork bifurcation of fixed points at $(x, \mu)=(0,-2)$, as shown by the previous solution for the fixed points of f.
- To determine the local behavior of the bifurcation at $(x, \mu)=(0,2)$, we Taylor expand about this point. Writing $\mu=2+\mu_{1}$, we get

$$
\begin{aligned}
f(x, \mu) & =-\left(1+\frac{1}{2} \mu_{1}\right)\left(x-\frac{1}{3} x^{3}+\ldots\right) \\
& =-\left(1+\frac{1}{2} \mu_{1}\right) x+\frac{1}{3} x^{3}+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
f^{2}(x, \mu)= & -\left(1+\frac{1}{2} \mu_{1}\right)\left[-\left(1+\frac{1}{2} \mu_{1}\right) x+\frac{1}{3} x^{3}+\ldots\right] \\
& +\frac{1}{3}\left[-\left(1+\frac{1}{2} \mu_{1}\right) x+\frac{1}{3} x^{3}+\ldots\right]^{3}+\ldots \\
= & \left(1+\mu_{1}\right) x-\frac{2}{3} x^{3}+\ldots
\end{aligned}
$$

- Thus f^{2} has a supercritical pitchfork bifurcation at $(0,2)$, and f has a supercritical period-doubling bifurcation in which a stable periodic orbit appears above $\mu=2$. The points on the orbit are fixed points of f^{2}; they are given approximately by

$$
x= \pm \sqrt{\frac{3(\mu-2)}{2}}+\ldots
$$

3. Consider the discrete dynamical system on the circle for $x_{n} \in \mathbb{T}$

$$
x_{n+1}=x_{n}+\mu \quad(\bmod 2 \pi)
$$

corresponding to rotation by an angle $\mu \in \mathbb{T}$. Describe the structure of the orbits and how they depend on μ.

Solution

- The orbit structure depends on whether μ is a rational or irrational multiple of 2π.
- If

$$
\frac{\mu}{2 \pi}=\frac{p}{q} \in \mathbb{Q}
$$

where p, q are relatively prime, then every orbit is periodic with minimal period q.

- If

$$
\frac{\mu}{2 \pi} \notin \mathbb{Q}
$$

then every orbit consists of a countably infinite sequence of distinct points. One can show that every orbit is dense in \mathbb{T} and equidistributed (Weyl's theorem).
4. Carry out numerical experiments for iterations of the logistic map

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

where $1 \leq \mu \leq 4$ and $0 \leq x_{0} \leq 1$. (You can write your own program or use the MATLAB script provided on the course website.)

Solution

- You should see a sequence of period doubling bifurcations, followed by chaotic behavior. Inside the chaotic region, there are 'windows' with stable period 3 orbits. See the text for further details.

