## Problem set 5

Math 207A, Fall 2011
Due: Wed., Nov. 2

1. Solve the ODE

$$
\binom{x}{y}_{t}=\left(\begin{array}{cc}
\mu & -\omega \\
\omega & \mu
\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{x_{0}}{y_{0}} .
$$

If $\omega>0$, sketch the phase plane for $\mu>0, \mu=0$, and $\mu<0$. Classify the equilibrium $\vec{x}=0$ in each case.
2. Solve the ODE

$$
\binom{x}{y}_{t}=\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{x_{0}}{y_{0}} .
$$

Sketch the phase plane for $\lambda>0, \lambda=0$, and $\lambda<0$. Classify the equilibrium $\vec{x}=0$ in each case.
3. (a) Use the power series definition of the exponential of a linear map

$$
e^{t A}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}
$$

to show that if $A B=B A$ then $e^{t A} e^{t B}=e^{t(A+B)}$. (You can assume that the series can be multiplied term by term and rearranged.)
(b) If

$$
A=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

use the series definition and the result of (a) to compute $e^{t A}$. Compare your answer with the solution of Problem 2.
(c) If $A, B$ need not commute, show that as $t \rightarrow 0$

$$
e^{t A} e^{t B}=e^{t(A+B)}+\frac{1}{2} t^{2}[A, B]+O\left(t^{3}\right)
$$

where $[A, B]=A B-B A$ is the commutator of $A$ and $B$.
4. Let $\vec{f}: \mathbb{R} \rightarrow \mathbb{R}^{d}$ be a continuous vector-valued function and $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ a linear map. Show that the solution $\vec{x}: \mathbb{R} \rightarrow \mathbb{R}^{d}$ of the autonomous, nonhomogeneous system

$$
\vec{x}_{t}=A \vec{x}+\vec{f}(t), \quad \vec{x}(0)=\vec{x}_{0}
$$

is given by

$$
\vec{x}(t)=e^{t A} \vec{x}_{0}+\int_{0}^{t} e^{(t-s) A} \vec{f}(s) d s
$$

(This expression for the solution of the nonhomogeneous equation in terms of the solution of the homogeneous equation is called Duhamel's formula.)

