Problem Set 5

Math 207A, Fall 2011
Solutions

1. Solve the ODE

$$
\binom{x}{y}_{t}=\left(\begin{array}{cc}
\mu & -\omega \\
\omega & \mu
\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{x_{0}}{y_{0}}
$$

If $\omega>0$, sketch the phase plane for $\mu>0, \mu=0$, and $\mu<0$. Classify the equilibrium $\vec{x}=0$ in each case.

Solution

- The characteristic polynomial of the matrix is

$$
\left|\begin{array}{cc}
\mu-\lambda & -\omega \\
\omega & \mu-\lambda
\end{array}\right|=(\lambda-\mu)^{2}+\omega^{2} .
$$

- The eigenvalues (roots of this polynomial) are

$$
\lambda_{ \pm}=\mu \pm i \omega .
$$

Thus, the origin is a stable spiral if $\mu<0$, a center if $\mu=0$, and an unstable spiral if $\mu>0$. For $\omega>0$, the trajectories rotate counterclockwise since $x_{t}<0$ when $x=0$ and $y>0$.

- Eigenvectors corresponding to $\lambda_{ \pm}$are

$$
\vec{r}_{ \pm}=\binom{1}{\mp i} .
$$

Thus, the general solution is

$$
\binom{x}{y}=c_{1} e^{(\mu+i \omega) t}\binom{1}{-i}+c_{2} e^{(\mu-i \omega) t}\binom{1}{i} .
$$

- The initial conditions are satisfied if

$$
\binom{x_{0}}{y_{0}}=c_{1}\binom{1}{-i}+c_{2}\binom{1}{i}
$$

which implies that

$$
c_{1}=\frac{1}{2}\left(x_{0}+i y_{0}\right), \quad c_{2}=\frac{1}{2}\left(x_{0}-i y_{0}\right) .
$$

- Writing this solution in real form, we get

$$
\binom{x}{y}=e^{\mu t}\binom{x_{0} \cos \omega t-y_{0} \sin \omega t}{x_{0} \sin \omega t+y_{0} \cos \omega t} .
$$

- Alternatively, note that

$$
\begin{aligned}
\exp t\left(\begin{array}{cc}
\mu & -\omega \\
\omega & \mu
\end{array}\right) & =\exp t\left(\begin{array}{cc}
\mu & 0 \\
0 & \mu
\end{array}\right) \cdot \exp t\left(\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{\mu t} & 0 \\
0 & e^{\mu t}
\end{array}\right) \cdot\left(\begin{array}{cc}
\cos \omega t & -\sin \omega t \\
\cos \omega t & \sin \omega t
\end{array}\right)
\end{aligned}
$$

so

$$
\binom{x}{y}=e^{\mu t}\left(\begin{array}{cc}
\cos \omega t & -\sin \omega t \\
\cos \omega t & \sin \omega t
\end{array}\right)\binom{x_{0}}{y_{0}}
$$

which gives the same solution.
2. Solve the ODE

$$
\binom{x}{y}_{t}=\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{x_{0}}{y_{0}} .
$$

Sketch the phase plane for $\lambda>0, \lambda=0$, and $\lambda<0$. Classify the equilibrium $\vec{x}=0$ in each case.

Solution

- We have

$$
y_{t}=\lambda y, \quad y(0)=y_{0}
$$

so

$$
y(t)=y_{0} e^{\lambda t}
$$

- Then

$$
x_{t}=\lambda x+y_{0} e^{\lambda t}, \quad x(0)=x_{0}
$$

so

$$
x(t)=x_{0} e^{\lambda t}+y_{0} t e^{\lambda t}
$$

- Thus

$$
\binom{x}{y}=e^{\lambda t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\binom{x_{0}}{y_{0}}
$$

- If $\lambda<0$ the origin is a stable node, if $\lambda>0$ it is an unstable node, and if $\lambda=0$ it is singular (the x-axis consists of equilibria).

3. (a) Use the power series definition of the exponential of a linear map

$$
e^{t A}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}
$$

to show that if $A B=B A$ then $e^{t A} e^{t B}=e^{t(A+B)}$. (You can assume that the series can be multiplied term by term and rearranged.)
(b) If

$$
A=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

use the series definition and the result of (a) to compute $e^{t A}$. Compare your answer with the solution of Problem 2.
(c) If A, B need not commute, show that as $t \rightarrow 0$

$$
e^{t A} e^{t B}=e^{t(A+B)}+\frac{1}{2} t^{2}[A, B]+O\left(t^{3}\right)
$$

where $[A, B]=A B-B A$ is the commutator of A and B.

Solution

- (a) The proof is the same as in the scalar case. We have

$$
\begin{aligned}
e^{t A} e^{t B} & =\left(\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} A^{k}\right)\left(\sum_{m=0}^{\infty} \frac{1}{m!} t^{m} B^{m}\right) \\
& =\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{k!m!} t^{k+m} A^{k} B^{m} \\
& =\sum_{n=0}^{\infty} t^{n}\left(\sum_{k=0}^{n} \frac{1}{k!(n-k)!} A^{k} B^{n-k}\right) .
\end{aligned}
$$

If A, B commute, then

$$
(A+B)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} A^{k} B^{n-k}
$$

Hence

$$
\begin{aligned}
e^{t A} e^{t B} & =\sum_{n=0}^{\infty} \frac{1}{n!} t^{n}(A+B)^{n} \\
& =e^{t(A+B)}
\end{aligned}
$$

The term-by-term multiplication and rearrangement of the series is justified by their absolute convergence.

- (b) Writing A as

$$
A=\Lambda+N, \quad \Lambda=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right), \quad N=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

we have

$$
\Lambda^{n}=\left(\begin{array}{cc}
\lambda^{n} & 0 \\
0 & \lambda^{n}
\end{array}\right)
$$

so

$$
e^{t \Lambda}=\sum_{n=0}^{\infty} \frac{1}{n!} t^{n} \Lambda^{n}=\left(\begin{array}{cc}
\sum_{n=0}^{\infty} \frac{1}{n!} t^{n} \lambda^{n} & 0 \\
0 & \sum_{n=0}^{\infty} \frac{1}{n!} t^{n} \lambda^{n}
\end{array}\right)=\left(\begin{array}{cc}
e^{\lambda t} & 0 \\
0 & e^{\lambda t}
\end{array}\right)
$$

Also $N^{n}=0$ for $n \geq 2$, so

$$
e^{t N}=I+t N=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

- The matrices Λ, N commute so by (a)

$$
e^{t A}=e^{t \Lambda} e^{t N}=e^{\lambda t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

- (c) If A and B do not commute, then

$$
\begin{aligned}
e^{t A} e^{t B} & =\left(1+t A+\frac{1}{2} t^{2} A^{2}\right)\left(1+t B+\frac{1}{2} t^{2} B^{2}\right)+O\left(t^{3}\right) \\
& =1+t(A+B)+\frac{1}{2} t^{2}\left(A^{2}+2 A B+B^{2}\right)+O\left(t^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
e^{t(A+B)} & =1+t(A+B)+\frac{1}{2} t^{2}(A+B)^{2}+O\left(t^{3}\right) \\
& =1+t(A+B)+\frac{1}{2} t^{2}\left(A^{2}+A B+B A+B^{2}\right)+O\left(t^{3}\right)
\end{aligned}
$$

- Subtracting these expressions, we get

$$
e^{t A} e^{t B}-e^{t(A+B)}=\frac{1}{2} t^{2}(A B-B A)+O\left(t^{3}\right)
$$

which proves the result.
4. Let $\vec{f}: \mathbb{R} \rightarrow \mathbb{R}^{d}$ be a continuous vector-valued function and $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ a linear map. Show that the solution $\vec{x}: \mathbb{R} \rightarrow \mathbb{R}^{d}$ of the autonomous, nonhomogeneous system

$$
\vec{x}_{t}=A \vec{x}+\vec{f}(t), \quad \vec{x}(0)=\vec{x}_{0}
$$

is given by

$$
\vec{x}(t)=e^{t A} \vec{x}_{0}+\int_{0}^{t} e^{(t-s) A} \vec{f}(s) d s
$$

(This expression for the solution of the nonhomogeneous equation in terms of the solution of the homogeneous equation is called Duhamel's formula.)

Solution

- Multiplying the equation by $e^{-t A}$, we get

$$
e^{-t A}\left(\vec{x}_{t}-A \vec{x}\right)=e^{-t A} \vec{f}(t) .
$$

The left-hand side is an exact time-derivative, so

$$
\frac{d}{d t}\left(e^{-t A} \vec{x}\right)=e^{-t A} \vec{f}(t)
$$

- Integrating this equation with respect to t and imposing the initial condition, we get

$$
e^{-t A} \vec{x}(t)=\vec{x}_{0}+\int_{0}^{t} e^{-s A} \vec{f}(s) d s
$$

Multiplication of this equation by $e^{t A}$ gives

$$
\vec{x}(t)=e^{t A} \vec{x}_{0}+\int_{0}^{t} e^{(t-s) A} \vec{f}(s) d s
$$

Remark. As follows from the superposition property of linear equations, the solution is the sum of a solution of the homogeneous equation $\vec{x}_{t}=A \vec{x}$ with initial data $\vec{x}(0)=\vec{x}_{0}$, and a solution of the nonhomogeneous equation $\vec{x}_{t}=A \vec{x}+\vec{f}$ with zero initial data $\vec{x}(0)=0$.

