Problem set 7

Math 207A, Fall 2011
Due: Wed., Nov. 23

1. Classify the equilibrium $(x, y)=(0,0)$ of the system

$$
x_{t}=x, \quad y_{t}=-y+x^{2} .
$$

Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y) phase space, and sketch the phase plane. What are the stable and unstable subspaces E^{s} and E^{u} and the stable and unstable manifolds $W^{s}(0,0)$ and $W^{u}(0,0)$ of the origin?
2. Write the system

$$
\begin{aligned}
& x_{t}=x-y-x\left(x^{2}+y^{2}\right) \\
& y_{t}=x+y-y\left(x^{2}+y^{2}\right)
\end{aligned}
$$

in polar coordinates. Classify the equilibrium $(x, y)=(0,0)$ and sketch the phase portrait. How do solutions behave as $t \rightarrow \infty$?
2. Find and classify the equilibria of the system

$$
x_{t}=\mu x-x^{2}, \quad y_{t}=-y .
$$

Sketch the phase portraits for $\mu<0, \mu=0$, and $\mu>0$. In each case, say if the equilibria are hyperbolic and describe their stable and unstable subspaces E^{s} and E^{u} and their stable and unstable manifolds W^{s} and W^{u}.
4. Consider the following model for the dynamics of a predator with population $x(t)$ and a prey with population $y(t) e . g$. pikes and eels, or foxes and rabbits:

$$
\begin{aligned}
& x_{t}=x(-1+y), \\
& y_{t}=y(1-x) .
\end{aligned}
$$

Explain why this is a reasonable qualitative model for a predator-prey system. Find the equilibria and classify them. Sketch the phase portrait. How do solutions behave?
Hint. To find the trajectories, solve the first order ODE for y as a function of x that is obtained from

$$
\frac{d y}{d x}=\frac{y_{t}}{x_{t}}
$$

