
Problem set 7
Math 207A, Fall 2011

Solutions

1. Classify the equilibrium (x, y) = (0, 0) of the system

xt = x, yt = −y + x2.

Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)-
phase space, and sketch the phase plane. What are the stable and unstable
subspaces Es and Eu and the stable and unstable manifolds W s(0, 0) and
W u(0, 0) of the origin?

Solution

• The linearized system at the origin is xt = x, yt = −y or(
x
y

)
t

=

(
1 0
0 −1

)(
x
y

)
.

The eigenvalues are λ = ±1, so the origin is a saddle point. This is
hyperbolic since neither eigenvalue has zero real part.

• The equation of the trajectories is

dy

dx
=
yt
xt

=
−y + x2

x
= −1

x
y + x.

This is a linear equation for y(x) with integrating factor x:

d

dx
(xy) = x

dy

dx
+ y = x2.

The solution is

y =
1

3
x2 +

C

x
(1)

where C is a constant of integration.

• For λ = 1, the eigenvector is ~r = (1, 0)T , which spans the unstable
subspace

Eu =

{(
c
0

)
: c ∈ R

}
i.e. the x-axis.



• For λ = −1, the eigenvector is ~r = (0, 1)T , which spans the stable
subspace

Es =

{(
0
c

)
: c ∈ R

}
i.e. the y-axis.

• The y-axis is invariant and tangent to Es at the origin, so the stable
manifold W s(0, 0) is the y-axis, x = 0.

• The curve (1) with C = 0 is invariant and tangent to Eu at the origin,
so the unstable manifold W u(0, 0) is the parabola

y =
1

3
x2.



2. Write the system

xt = x− y − x
(
x2 + y2

)
yt = x+ y − y

(
x2 + y2

)
in polar coordinates. Classify the equilibrium (x, y) = (0, 0) and sketch the
phase portrait. How do solutions behave as t→∞?

Solution

• Writing

r =
√
x2 + y2, θ = tan−1 y

x

we have

rt =
xxt + yyt

r
=
x(x− y − xr2) + y(x+ y − yr2)

r
= r − r3,

θt =
xyt − xyt
x2 + y2

=
x(x+ y − yr2)− y(x− y − xr2)

r2
= 1,

so the polar form of the ODE is

rt = r − r3, θt = 1.

• The origin r = 0 is an unstable spiral point and the circle r = 1 is a
stable limit cycle.

• As t→∞ any solution with nonzero initial data approaches the limit
cycle

x(t) = cos(t+ δ), y(t) = sin(t+ δ)

for some constant phase shift δ (which depends on the initial data).



3. Find and classify the equilibria of the system

xt = µx− x2, yt = −y.

Sketch the phase portraits for µ < 0, µ = 0, and µ > 0. In each case, say if
the equilibria are hyperbolic and describe their stable and unstable subspaces
Es and Eu and their stable and unstable manifolds W s and W u.

Solution

• The equilibria are

(x, y) = (0, 0), (x, y) = (µ, 0).

• The linearization at (0, 0) is

xt = µx, yt = −y.

If µ < 0, this is a stable node (with Es = R2, Eu = 0), if µ = 0 this is
a singular point (with Es the y-axis and Eu = 0), and if µ > 0 this is a
saddle point (with Es the y-axis and Eu the x-axis). The equilibrium
is hyperbolic if µ 6= 0.

• The linearization at (µ, 0) is

xt = −µx, yt = −y

where (x, y) denote the perturbations from the equilibrium (µ, 0). If
µ < 0, this is a saddle point (with Es the y-axis, Eu the x-axis), if µ = 0
this is a singular point (with Es the y-axis and Eu = 0), and if µ > 0
this is a stable node (with Es = R2 and Eu = 0). The equilibrium is
hyperbolic if µ 6= 0.

• Note the exchange of stability in the equilibria when they cross at
µ = 0.

• Looking at the phase planes, shown in the linked figure, we see that:

– if µ < 0 then

W s(µ, 0) = {(µ, y) : y ∈ R} ,
W u(µ, 0) = {(x, 0) : −∞ < x < 0} ,
W s(0, 0) = {(x, y) : µ < x <∞, y ∈ R} ,
W u(0, 0) = {(0, 0)}.



– if µ = 0 then

W s(0, 0) = {(0, y) : y ∈ R} ,
W u(0, 0) = {(0, 0)}.

Note that the stable manifold only includes trajectories that ap-
proach (0, 0) tangent to the stable subspace, not ones that ap-
proach (0, 0) tangent to the center subspace (which do not ap-
proach the equilibrium exponentially quickly).

– if µ > 0 then

W s(0, 0) = {(0, y) : y ∈ R} ,
W u(0, 0) = {(x, 0) : −∞ < x < µ} ,
W s(µ, 0) = {(x, y) : 0 < x <∞, y ∈ R} ,
W u(µ, 0) = {(0, 0)}.



4. Consider the following model for the dynamics of a predator with popu-
lation x(t) and a prey with population y(t) e.g. pikes and eels, or foxes and
rabbits:

xt = x (−1 + y) ,

yt = y (1− x) .

Explain why this is a reasonable qualitative model for a predator-prey system.
Find the equilibria and classify them. Sketch the phase portrait. How do
solutions behave?

Solution

• In the absence of prey (y = 0), the predator population satisfies

xt = −x

so it decays exponentially; with a sufficiently large population of prey
(y > 1), the predator population grows. In the absence of predators
(x = 0), the prey population satisfies

yt = y

so it grows exponentially; with a sufficiently large population of preda-
tors (x > 1), the prey population declines.

• The equilibria are

(x, y) = (0, 0), (x, y) = (1, 1).

• The linearization at (0, 0) is

xt = −x, yt = y,

which is a saddle point with eigenvalues λ = ±1.

• The linearization at (1, 1) is

xt = y, yt = −x

where (x, y) denote the perturbations from the equilibrium (1, 1). This
is a center with eigenvalues λ = ±i.



• The trajectories satisfy

dy

dx
=
yt
xt

=
x (−1 + y)

y (1− x)
.

Separating variables, we get that∫
−1 + y

y
dy =

∫
1− x
x

dx

or
− log |y|+ y = log |x| − x+ C

where C is a constant of integration. Hence, taking the exponential of
this equation and renaming the constant, we find that the trajectories
satisfy

ye−y = C
ex

x
. (2)

• Consider x, y > 0. The function

f(x) =
ex

x

is monotone decreasing in 0 < x ≤ 1 from ∞ to a minimum value
f(1) = e and monotone increasing in 1 ≤ x < ∞ from e to ∞. The
function

g(y) = ye−y

is monotone increasing in 0 < y ≤ 1 from 0 to a maximum value
g(1) = 1/e, and monotone decreasing in 1 ≤ y < ∞ from 1/e to 0. It
follows that (2) has positive solutions only if C ≥ 1/e2. When C =
1/e2, the unique solution is the equilibrium trajectory (x, y) = (1, 1).
When C > 1, the equation defines a closed bounded curve enclosing
the equilibrium.

• It follows that (1, 1) is a nonlinear center for the full system and that
all solutions with positive initial data are periodic functions of time.

• According to this model, if initially the predator population is small and
the prey population is large, then the predator population increases at
the expense of the prey until there are too many predators; the predator
population then decreases and the prey population recovers. This cycle
then repeats.


