
Problem set 8
Math 207A, Fall 2011

Solutions

1. Sketch the phase plane of the system

xt = x2, yt = −y.

Linearize the system about the equilibrium (0, 0) and determine the unstable,
stable and center subspaces of the equilibrium. What is the stable manifold
W s(0, 0)? Show that there are many possible choices of a (C∞) center man-
ifold W c(0, 0).

Solution

• the linearized system at (0, 0) is

xt = 0, yt = −y.

This has eigenvalues λ = −1, 0 with corresponding eigenvectors ~r =
(0, 1)T , (1, 0)T which span the (one-dimensional) stable and center sub-
spaces, respectively. The (zero-dimensional) unstable subspace consists
of 0.

• The equation of the trajectories is

dy

dx
= − y

x2

Separating variables and solving this equation, we find that

y = Ce1/x

where C is a constant of integration.

• For C 6= 0, the trajectories approach the origin smoothly (C∞) as x→
0−, go to infinity as x→ 0+,a and approach the horizontal asymptote
y = C as |x| → ∞. The phase portraits is the same as the one shown
for question 3 in problem set 7 with µ = 0 reflected in the y-axis
(x 7→ −x).



• The stable subspace of the origin, the y-axis, is invariant under the
flow, so it is also the stable manifold. The unstable manifold is 0.

• Any curve of the form

y =

{
Ce1/x −∞ < x < 0

0 0 ≤ x

for some constant C is a smooth (C∞) invariant manifold. (It consists
of three trajectories: the part for x < 0, the equilibrium 0, and the
positive x-axis.) It is tangent to the center subspace at 0, so any such
curve is a center manifold. In particular, the whole x-axis is a center
manifold (C = 0), but it is not the only one.



2. Consider the Euler equations for a rotating rigid body

Ṁ1 =

(
1

I3
− 1

I2

)
M2M3,

Ṁ2 =

(
1

I1
− 1

I3

)
M3M1,

Ṁ3 =

(
1

I2
− 1

I1

)
M1M2,

where M1(t), M2(t), M3(t) are components of the body angular momentum
and the positive constants 0 < I1 < I2 < I3 are the moments of inertia of
the body (which we assume to be distinct).

(a) Show that the (squared) total angular momentum

J = M2
1 +M2

2 +M2
3

and the kinetic energy

T =
M2

1

I1
+
M2

2

I2
+
M2

3

I3

are conserved.

(b) Restrict the Euler equations to the sphere

M2
1 +M2

2 +M2
3 = 1, (1)

which is an invariant manifold for the flow by (a). Find the equilibria on
this sphere, linearize the equations about the equilibria, classify them, and
determine their stability. Sketch the phase portrait on the sphere.

Solution

• (a) We have

J̇ = M1Ṁ1 +M2Ṁ2 +M3Ṁ3

=

(
1

I3
− 1

I2

)
M1M2M3 +

(
1

I1
− 1

I3

)
M2M3M1

+

(
1

I2
− 1

I1

)
M3M1M2

= 0



and

Ṫ =
M1

I1
Ṁ1 +

M2

I2
Ṁ2 +

M3

I3
Ṁ3

=

(
1

I3I1
− 1

I1I2

)
M1M2M3 +

(
1

I1I2
− 1

I2I3

)
M2M3M1

+

(
1

I2I3
− 1

I3I1

)
M3M1M2

= 0

so both J and T are conserved.

• (b) There are six equilibria on the unit sphere:

(M1,M2,M3) = (±1, 0, 0), (0,±1, 0), (0, 0,±1).

These correspond to a steady rotation of the body in either direction
about each of its three principal axes with total angular momentum
one.

• Consider the linearization about (1, 0, 0). Writing

M1 = 1 +N1, M2 = N2, M3 = N3

where N1, N2, N3 are small, we find from the constraint (1) that

2N1 +N2
2 +N2

2 = 0.

Thus, in the linearized approximation, we have N1 = 0. (The tangent
plane to the sphere at (1, 0, 0) is vertical.) This is consistent with the
linearization of the first equation, which gives Ṅ1 = 0. Linearizing the
remaining equations at M1 = 1, we get

Ṅ2 =

(
1

I1
− 1

I3

)
N3, Ṅ3 =

(
1

I2
− 1

I1

)
N2.

Since 0 < I1 < I2 < I3, the coefficients 1/I1−1/I3 and 1/I2−1/I1 have
opposite signs, so the equilibrium is a center. A similar computation
shows that (−1, 0, 0) and (0, 0,±1) are centers.



• Linearizing about (0, 1, 0), we find that

Ṅ1 =

(
1

I3
− 1

I2

)
N3, Ṅ3 =

(
1

I2
− 1

I1

)
N1.

In this case, both coefficients 1/I3−1/I2 and 1/I2−1/I1 have the same
sign, so the equilibrium is a saddle. Similarly, (0,−1, 0) is a saddle.

• Thus, steady rotations about the principal axes with the largest and
smallest moments of inertia are linearly stable, but a steady rotation
about the axis with the middle moment of inertia is unstable.

• We can’t immediately conclude from the previous analysis that the
equilibria (±1, 0, 0), (0, 0,±1) are nonlinearly stable, since centers are
not hyperbolic. Nevertheless, the use of the second conserved quantity
shows that the trajectories are intersections of the energy ellipsoids
T = constant with the sphere J = 1, which implies that these equilibria
are nonlinear centers and are stable (but not asymptotically stable).

Figure 1: Phase portrait for rigid body rotation (from Bender and Orzag).


