
CHAPTER 1

Dynamical systems and ODEs

The subject of dynamical systems concerns the evolution of systems in time.
In continuous time, the systems may be modeled by ordinary differential equations
(ODEs), partial differential equations (PDEs), or other types of equations (e.g.,
integro-differential or delay equations); in discrete time, they may be modeled by
difference equations or iterated maps.

Linear evolution equations have an extensive theory based on the superposi-
tion principle that every linear combination of solutions is also a solution. Using
this principle, one can often obtain general solutions as linear combinations of suffi-
ciently many special solutions, which one may be able to find more-or-less explicitly.

Nonlinear evolution equations are not explicitly solvable, except in rare but im-
portant special cases, and the solutions of even simple-looking nonlinear equations
can exhibit complicated behavior such as chaos. The focus of dynamical systems is
to understand the qualitative behavior of the solutions. Typical questions include:
What are the equilbrium or time-periodic solutions? Are these solutions stable?
What is the long-time asymptotic behavior of general solutions? Do solutions be-
have chaotically? What kinds of statistical regularities do solutions possess? How
does the qualitative dynamics change as any parameters on which the system de-
pends vary? Do equilibria lose stability, do time-periodic solutions appear, or does
chaotic behavior arise?

These notes are concerned with low-dimensional dynamical systems, whose
state is described by a few variables. The evolution of these systemmay be described
by ODEs or maps on a low-dimensional state-space. Dynamical systems with high
or infinite-dimensional state spaces, such as PDEs, can show many types of behavior
that do not arise in low-dimensional systems (e.g., solutions with multiscale spatial
structures such as turbulence).

We will begin by discussing some general properties of initial value problems
(IVPs) for ODEs as well as their basic underlying mathematical theory.

1.1. First-order systems of ODEs

Does the Flap of a Butterfly’s

Wings in Brazil Set off a Tornado

in Texas?

Edward Lorenz, 1972

An autonomous system of first-order ODEs has the form

(1.1) xt = f(x)

where x(t) ∈ Rd is a vector of dependent variables, f : Rd → Rd is a vector field,
and xt is the time-derivative, which we also write as dx/dt or ẋ. We may regard
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2 1. DYNAMICAL SYSTEMS AND ODES

(1.1) as describing the evolution in continuous time t of a dynamical system with
finite-dimensional state x(t) of dimension d.

In component form, we write x = (x1, . . . , xd),

f(x) = (f1(x1 . . . , xd), . . . , fn(x1, . . . xd)) ,

and the system (1.1) is

x1t = f1(x1 . . . , xd),

x2t = f2(x1 . . . , xd),

...

xdt = fd(x1 . . . , xd).

Usually, we do not use notation such as ~x to distinguish vectors explicitly from
scalars, and we write vectors as row or column vectors as convenient.

Autonomous ODEs arise as models of systems whose laws do not change in
time. They are invariant under translations in time: if x(t) is a solution, then so is
x(t+ t0) for any constant t0.

Example 1.1. The Lorenz system for (x, y, z) ∈ R3 is

xt = σ(y − x),

yt = rx − y − xz,

zt = xy − bz.

(1.2)

The system depends on three positive parameters σ, r, b; a commonly studied case
is σ = 10, r = 28, and b = 4/3. Lorenz (1963) obtained (1.2) as a truncated model
of thermal convection in a fluid layer, where σ has the interpretation of a Prandtl
number(the ratio of kinematic viscosity and thermal diffusivity), r corresponds to a
Rayleigh number, which is a dimensionless parameter proportional to the tempera-
ture difference across the fluid layer and the gravitational acceleration acting on the
fluid, and b is a ratio of the height and width of the fluid layer. (See Section 1.8.)

Lorenz discovered that solutions of (1.2) behave chaotically, showing that even
low-dimensional nonlinear dynamical systems can behave in complex ways. Solu-
tions of chaotic systems are sensitive to small changes in the initial conditions, and
Lorenz used this model to discuss the unpredictability of weather (the “butterfly
effect”).

If x̄ ∈ Rd is a zero of f , meaning that

(1.3) f(x̄) = 0,

then (1.1) has the constant solution x(t) = x̄. We call x̄ an equilibrium solution,
or steady state solution, or fixed point of (1.1). An equilibrium may be stable or
unstable, depending on whether small perturbations of the equilibrium decay —
or, at least, remain bounded — or grow. (See Definition 1.22 below for a precise
definition.) The determination of the stability of equilibria will be an important
topic in the following.

Other types of ODEs can be put in the form (1.1). This rewriting does not
simplify their analysis, and may obscure the specific structure of the ODEs, but it
shows that (1.1) is rather a general form.



1.1. FIRST-ORDER SYSTEMS OF ODES 3

Example 1.2. A non-autonomous system for x(t) ∈ Rd has the form

(1.4) xt = f(x, t)

where f : Rd × R → Rd. A nonautonomous ODE describes systems governed by
laws that vary in time, e.g., due to external influences. Equation (1.4) can be
written as an autonomous (‘suspended’) system for y = (x, s) ∈ R

n+1 with s = t as

xt = f(x, s), st = 1.

Note that this increases the dimension of the system by one. Moreover, even if
the original system has an equilibrium solution x(t) = x̄ such that f(x̄, t) = 0, the
suspended system has no equilibrium solutions for y.

Higher-order ODEs can be written as first order systems by the introduction
of derivatives as new dependent variables.

Example 1.3. A second-order system for x(t) ∈ Rd of the form

(1.5) xtt = f(x, xt)

can be written as a first-order system for z = (x, y) ∈ R2d with y = xt as

xt = y, yt = f(x, y).

Note that this doubles the dimension of the system.

Example 1.4. In Newtonian mechanics, the position x(t) ∈ Rd of a particle of
mass m moving in d space dimensions in a spatially-dependent force-field F : Rd →
Rd satisfies Newton’s second law,

mxtt = F (x).

If p = mxt is the momentum of the particle, then (x, p) satisfies the first-order
system

(1.6) xt =
1

m
p, pt = F (x).

A conservative force-field is derived from a scalar-valued potential V : Rd → R,

F = −
∂V

∂x
, (F1, . . . , Fd) =

(

∂V

∂x1
, . . . ,

∂V

∂xd

)

,

where we use ∂/∂x, ∂/∂p to denote the derivatives, or gradients, with respect to x,
p respectively. For example, the gravitational potential of a planet moving around
the sun (which we assume to be fixed at the origin) is given by

(1.7) V (x) = −
GmM

|x|
,

where G ≈ 6.673 × 10−11Nm/kg2 is the gravitational constant, m is the mass of
the planet, and M is the mass of the sun. In that case,

F (x) = −
GmM

|x|2
x

|x|
,

meaning that the gravitational force on the planet is directed towards the sun with
strength proportional to |x|−2. (Newton’s inverse-square law of gravity.)

For a conservative force field, (1.6) becomes the Hamiltonian system

(1.8) xt =
∂H

∂p
, pt = −

∂H

∂x
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where the Hamiltonian

(1.9) H(x, p) =
1

2m
p2 + V (x)

is the total energy (kinetic + potential) of the particle. The Hamiltonian is a
conserved quantity of (1.8), since by the chain rule

d

dt
H (x(t), p(t)) =

∂H

∂x
·
dx

dt
+

∂H

∂p
·
dx

dt

= −
∂H

∂x
·
∂H

∂p
+

∂H

∂p
·
∂H

∂x

= 0.

Thus, solutions (x, p) of (1.8) lie on the level surfaces H(x, p) = constant.

1.2. Existence and uniqueness theorem for IVPs

An initial value problem (IVP) for (1.1) consists of solving the ODE subject to
an initial condition (IC) for x:

xt = f(x),

x(0) = x0.
(1.10)

Here, x0 ∈ Rd is a given constant vector. For an autonomous system, there is no
loss of generality in imposing the initial condition at t = 0, rather than some other
time t = t0.

For a first-order system, we impose initial data for x. For a second-order
system, such as (1.5), we impose initial data for x and xt, and analogously for
higher-order systems. The ODE in (1.10) determines xt(0) from x0, and we can
obtain all higher order derivatives x(n)(0) by differentiating the ODE with respect
to t and evaluating the result at t = 0. Thus, it reasonable to expect that (1.10)
determines a unique solution, and this is indeed true provided that f(x) satisfies a
mild smoothness condition, called Lipschitz continuity, which is nearly always met
in applications. Before stating the existence-uniqueness theorem, we explain what
Lipschitz continuity means.

We denote by

|x| =
√

x2
1 + · · ·+ x2

d

the Euclidean norm of a vector x ∈ Rd.

Definition 1.5. A function f : Rd → Rd is locally Lipschitz continuous on Rd,
or Lipschitz continuous for short, if for every R > 0 there exists a constant M > 0
such that

|f(x) − f(y)| ≤ M |x− y| for all x, y ∈ Rd such that |x|, |y| ≤ R.

The function f is globally Lipschitz continuous on Rd if there exists a constant
M > 0 such that

|f(x)− f(y)| ≤ M |x− y| for all x, y ∈ Rd

We refer to the constant M in this definition as a Lipschitz constant for f .
Every continuously differentiable function is locally Lipschitz continuous.



1.2. EXISTENCE AND UNIQUENESS THEOREM FOR IVPS 5

Definition 1.6. A function f : Rd → Rd, where

f(x) = (f1(x1, x2, . . . , xd), f2(x1, x2, . . . , xd), . . . , fd(x1, x2, . . . , xd)) ,

is continuously differentiable on Rd if all its partial derivatives

∂fi
∂xj

, 1 ≤ i, j ≤ d

exist and are continuous functions.

Proposition 1.7. A continuously differentiable function f : Rd → Rd is locally
Lipschitz continuous on Rn.

Proof. From the fundamental theorem of calculus

f(x)− f(y) =

∫ 1

0

d

ds
f (y + s(x− y)) ds

=

∫ 1

0

Df (y + s(x− y)) (x− y) ds.

Here Df is the derivative of f , whose matrix is the Jacobian matrix of f with
components ∂fi/∂xj. Hence

|f(x)− f(y)| ≤

∫ 1

0

|Df (y + s(x− y)) (x− y)| ds

≤

(
∫ 1

0

‖Df (y + s(x− y))‖ ds

)

|x− y|

≤ M |x− y|

where ‖Df‖ denotes the Euclidean matrix norm of Df and

M = max
0≤s≤1

‖Df (y + s(x− y))‖ ,

which is finite since Df is continuous. For scalar-valued functions, this result also
follows from the mean value theorem. �

Example 1.8. The function f : R → R defined by f(x) = x2 is locally Lipschitz
continuous on R, since it is continuously differentiable. The function g : R → R

defined by g(x) = |x| is Lipschitz continuous, although it is not differentiable at
x = 0. The function h : R → R defined by h(x) = |x|1/2 is not Lipschitz continuous
at x = 0, although it is continuous.

The following result, due to Picard and Lindelöf, is the fundamental local ex-
istence and uniqueness theorem for IVPs for ODEs. It is a local existence theorem
because it only asserts the existence of a solution for sufficiently small times, not
necessarily for all times.

Theorem 1.9 (Existence-uniqueness). If f : Rd → Rd is locally Lipschitz
continuous, then there exists a unique solution x : I → Rd of (1.10) defined on
some time-interval I ⊂ R containing t = 0.

In practice, to apply this theorem to (1.10), we usually just have to check that
the right-hand side f(x) is a continuously differentiable function of the dependent
variables x. We also remark that this theorem is a local result, and it is sufficient for
f to be Lipschitz continuous or continuously differentiable in some neighborhood
of the initial data x0.
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We will not prove Theorem 1.9 here, but we explain the main idea of the proof.
Since it is impossible, in general, to find an explicit solution of a nonlinear IVP
such as (1.10), we have to construct the solution by some kind of approximation
procedure. Using the method of Picard iteration, we rewrite (1.10) as an equivalent
integral equation

(1.11) x(t) = x0 +

∫ t

0

f (x(s)) ds.

This integral equation formulation includes both the initial condition and the ODE.
We then define a sequence xn(t) of functions by iteration, starting from the constant
initial data x0:

(1.12) xn+1(t) = x0 +

∫ t

0

f (xn(s)) ds, n = 1, 2, 3, . . . .

Using the Lipschitz continuity of f , one can show that this sequence converges
uniformly on a sufficiently small time interval I to a unique function x(t), and
taking the limit of (1.12) as n → ∞, we find that x(t) satisfies (1.11), so it is the
solution of (1.10).

Two simple scalar examples illustrate Theorem 1.9. The first example shows
that solutions of nonlinear IVPs with smooth vector fields may develop singularities
in finite time. We refer to this phenomenon informally as ‘blow-up,’ and it is a
fundamental difficulty in the analysis of nonlinear evolution equations.

Example 1.10. Consider the IVP

xt = x2, x(0) = x0.

For x0 6= 0, we find by separating variables that the solution is

(1.13) x(t) =
1

1/x0 − t
.

If x0 > 0, the solution exists only for −∞ < t < t∗ where t∗ = 1/x0, and x(t) → ∞
as t ↑ t∗. Note that the larger the initial data x0 the smaller the ‘blow-up’ time t∗.
If x0 < 0, then t∗ < 0 and the solution exists for t∗ < t < ∞. Only if x0 = 0 does
the solution x(t) = 0 exists for all times t ∈ R.

One might consider using (1.13) past the blow-up time, but continuing a solu-
tion through infinity does not usually make sense in evolution problems. In appli-
cations, the appearance of a singularity typically signifies that the assumptions of
the mathematical model have broken down in some way.

The second example shows that solutions of (1.10) need not be unique if f is
not Lipschitz continuous.

Example 1.11. Consider the IVP

(1.14) xt = |x|1/2, x(0) = 0.

The right-hand side of the ODE, f(x) = |x|1/2, is not differentiable or Lipschitz
continuous at the initial value x = 0. One solution of (1.14) is x(t) = 0, but this is
not the only solution. Separating variables in the ODE, we get the solution

x(t) =
1

4
(t− t0)

2.
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Thus, for any t0 ≥ 0, the function

x(t) =

{

0 if t ≤ t0

(1/4)(t− t0)
2 if t > t0

is also a continuously-differentiable solution of the IVP (1.14). The parabolic so-
lution can ‘take off’ spontanteously with zero derivative from the zero solution at
any nonnegative time t0. In applications, a lack of uniqueness typically means that
something is missing from the formulation of the mathematical model.

If f(x) is only assumed to be a continuous function of x, then solutions of
(1.10) always exist (this is the Peano existence theorem) although they may fail to
be unique, as shown by Example 1.11. In future, we will assume that f is a smooth
function; typically, f will be C∞, meaning that is has continuous derivatives of all
orders. In that case, the issue of non-uniqueness of solutions of IVPs does not arise.

1.3. Extension of solutions

Even for arbitrarily smooth functions f , the solution of the nonlinear IVP
(1.10) may fail to exist for all times if f(x) grows faster than a linear function of
x, as shown in Example 1.10. According to the following theorem, the only way in
which global existence can fail for a smooth system of ODEs on Rd is if the solution
‘escapes’ to infinity.

Theorem 1.12 (Extension). If f : Rd → Rd is locally Lipschitz continuous on
R

d, then the solution x : I → R
d of the initial value problem (1.10) exists on a

maximal time-interval
I = (T−, T+) ⊂ R

where −∞ ≤ T− < 0 and 0 < T+ ≤ ∞ depend, in general, on the initial data x0. If
T+ < ∞, then |x(t)| → ∞ as t ↑ T+, and if T− > −∞, then |x(t)| → ∞ as t ↓ T−.

This theorem implies that we can continue a solution of the ODE so long as it
remains bounded.

Example 1.13. Consider the function defined for t 6= 0 by

x(t) = sin

(

1

t

)

.

This function cannot be extended to a differentiable, or even continuous, function
at t = 0 even though it is bounded, so x(t) is not a solution of any ODE xt = f(x)
with a smooth right-hand side f on any time interval |t| < T . This is impossible
because the ODE implies that the derivative xt remains bounded so long as the
solution x remains bounded. On the other hand, an ODE may have a solution like
x(t) = 1/t, since the derivative xt only becomes large when x itself becomes large.

Example 1.14. Consider the Hamiltonian system (1.8) with Hamiltonian (1.9).
If V (x) → ∞ as |x| → ∞, then H(x, p) = constant implies that (x, p) remains
bounded, so solutions exist for all t ∈ R.

Example 1.15. Consider the motion of a mass in the gravitational potential
(1.7). The position x(t) ∈ R3 of the mass satisfies

xtt = f(x), f(x) = −
GM

|x|2
x

|x|
.
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It is not possible to extend a solution smoothly if x(t) → 0 in finite time, meaning
that the mass collides with the gravitational point-source at the origin. This loss of
global existence occurs because the non-smooth vector field f(x) has a singularity
at x = 0, not because the solution escapes to infinity.

Example 1.16. Theorem 1.9 implies that the Lorenz system (1.1) with arbi-
trary initial conditions

x(0) = x0, y(0) = y0, z(0) = z0

has a unique solution defined on some time interval containing 0, since the right
hand side is a smooth (in fact, quadratic) function of (x, y, z). The theorem does
not imply, however, that the solution exists for all t.

Nevertheless, we claim that when the parameters (σ, r, b) are positive the solu-
tion does exist for all t ≥ 0. From Theorem 1.12, this conclusion follows if we can
show that the solution remains bounded, and to do this we introduce a suitable
Lyapunov function. A convenient choice is

V (x, y, z) = rx2 + σy2 + σ(z − 2r)2.

Using the chain rule, we find that if (x, y, z) satisfies (1.2), then

d

dt
V (x, y, z) = 2rxxt + 2σyyt + 2σ(z − 2r)zt

= 2rσx(y − x) + 2σy(rx − y − xz) + 2σ(z − 2r)(xy − bz)

= −2σ
[

rx2 + y2 + b(z − r)2
]

+ 2bσr2.

Hence, if W (x, y, z) > br2, where

W (x, y, z) = rx2 + y2 + b(z − r)2,

then V (x, y, z) is decreasing in time. This means that if C is sufficiently large that
the ellipsoid V (x, y, z) < C contains the ellipsoid W (x, y, z) ≤ br2, then solutions
cannot escape from the region V (x, y, z) < C forward in time, since they move
‘inwards’ across the boundary V (x, y, z) = C. Therefore, the solution remains
bounded and exists for all t ≥ 0.

Note that this argument does not preclude the possibility that solutions of (1.2)
blow up backwards in time. The Lorenz system models a forced, dissipative system
and its dynamics are not time-reversible. (This contrasts with the dynamics of
conservative, Hamiltonian systems, which are time-reversible.)

The phenomenon of blow-up also occurs for solutions of nonlinear PDEs, al-
though the situation there is more complicated because spatial derivatives of the
solution may become unbounded, rather than the solution itself.

Example 1.17. The following PDE for u(x, t)

ut + uux = 0

is called the inviscid Burgers equation. The method of characteristics shows that u
remains bounded but ux typically approaches −∞ in finite time. One can continue
smooth solutions past the blow-up time by introducing suitable discontinuities,
called shocks, in the solutions [15].
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Example 1.18. The velocity ~u(~x, t) and pressure p(~x, t) of a viscous incom-
pressible fluid satisfy the incompressible Navier-Stokes equations

~ut + ~u · ∇~u+
1

ρ0
∇p = ν∆~u,

∇ · ~u = 0,

where the constants ρ0 and ν are the density and kinematic viscosity of the fluid,
respectively. In three-space dimensions, it is unknown whether or not the deriva-
tives ∇~u can develop a singularity in finite time. The resolution of this question is
one of the Clay Mathematics Institute Millennium Problems [2]. If the derivatives
of ~u do blow up, then solutions of the initial value problem (IVP) for the Navier-
Stokes equations may not be unique, in which case the IVP is not well-posed and
the Navier-Stokes equations would not provide a satisfactory mathematical model
for fluid flow in such cases.

1.4. Linear systems of ODEs

An IVP for a (homogeneous, autonomous, first-order) linear system of ODEs
for x(t) ∈ R

d has the form

xt = Ax,

x(0) = x0
(1.15)

where A is a d × d matrix and x0 ∈ Rd. This system corresponds to (1.10) with
f(x) = Ax. Linear systems are much simpler to study than nonlinear systems, and
perhaps the first question to ask of any equation is whether it is linear or nonlinear.

The linear IVP (1.15) has a unique global solution, which is given explicitly by

x(t) = etAx0, −∞ < t < ∞

where

etA = I + tA+
1

2
t2A2 + · · ·+

1

n!
tnAn + . . .

is the matrix exponential.
If A is nonsingular, then (1.15) has a unique equilibrium solution x = 0. This

equilibrium is stable if all eigenvalues of A have negative real parts and unstable
if some eigenvalue of A has positive real part. If A is singular, then there is a
ν-dimensional subspace of equilibria where ν is the nullity of A.

Linear systems are important in their own right, but they also arise as approx-
imations of nonlinear systems. Suppose that x̄ is an equilibrium solution of (1.1),
satisfying (1.3). Then writing

x(t) = x̄+ y(t)

and Taylor expanding f(x) about x̄, we get

f(x̄+ y) = Ay + . . .

where A is the derivative of f evaluated at x̄, with matrix (aij):

A = Df(x̄), aij =
∂fi
∂xj

(x̄).

The linearized approximation of (1.1) at the equilibrium x̄ is then

yt = Ay.
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An important question is if this linearized system provides a good local approxi-
mation of the nonlinear system for solutions that are near equilibrium. This is the
case under the following condition.

Definition 1.19. An equilibrium x̄ of (1.1) is hyperbolic if Df(x̄) has no
eigenvalues with zero real part.

Thus, for a hyperbolic equilibrium, all solutions of the linearized system grow
or decay exponentially in time. According to the Hartman-Grobman theorem, if x̄
is hyperbolic, then the flows of the linearized and nonlinear system are (topologi-
cally) equivalent near the equilibrium. In particular, the stability of the nonlinear
equilibrium is the same as the stability of the equilibrium of the linearized system.
One has to be careful, however, in drawing conclusions about the behavior of the
nonlinear system from the linearized system if Df(x̄) has eigenvalues with zero real
part. In that case the nonlinear terms may cause the growth or decay of perturba-
tions from equilibrium, and the behavior of solutions of the nonlinear system near
the equilibrium may differ qualitatively from that of the linearized system.

Non-hyperbolic equilibria are not typical for specific systems, since one does
not expect the eigenvalues of a given matrix to have a real part that is exactly
equal to zero. Nevertheless, non-hyperbolic equilibria arise in an essential way in
bifurcation theory when an eigenvalue of a system that depends on some parameter
has real part that passes through zero.

1.5. Phase space

it may happen that small

differences in the initial conditions

produce very great ones in the final

phenomena

Henri Poincaré, 1908

Very few nonlinear systems of ODEs are explicitly solvable. Therefore, rather
than looking for individual analytical solutions, we try to understand the qualitative
behavior of their solutions. This global, geometrical approach was introduced by
Poincaré (1880).

We may represent solutions of (1.10) by solution curves, trajectories, or orbits,
x(t) ∈ R

d in phase, or state, space.1 These trajectories are integral curves of the
vector field f , meaning that they are tangent to f at every point. The existence-
uniqueness theorem implies if the vector field f : Rd → Rd is smooth, then a unique
trajectory passes through each point of phase space Rd and that trajectories cannot
cross. We may visualize f as the steady velocity field of a fluid that occupies phase
space and the trajectories as the paths of fluid particles.

Let x(t;x0) denote the solution of (1.10), defined on its maximal time-interval
of existence T−(x0) < t < T+(x0). The existence-uniqueness theorem implies that
for each t ∈ R we can define a flow, or solution, map Φt : Ut ⊂ R

d → R
d by

Φt(x0) = x(t;x0), Ut =
{

x0 ∈ R
d : T−(x0) < t < T+(x0)

}

.

1Sometimes the term ‘phase space’ is used to refer specifically to the state space of a Hamil-

tonian system; we will use the term to refer to the state space of any dynamical system.
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That is, Φt maps the initial data x0 to the solution at time t.2 In the fluid analogy,
Φt may be interpreted as the map that takes a particle from its initial location
at time 0 to its location at time t. Note that Φt(x0) is not defined for all t ∈ R,
x0 ∈ Rd unless all solutions exist globally.

The next result implies that the solution of an IVP depends continuously on
the initial data, and that the flow map of a smooth vector field is smooth. Here,
‘smooth’ means, for example, C1 or C∞.

Theorem 1.20 (Continuous dependence on initial data). If the vector field f in
(1.10) is locally Lipschitz continuous, then the corresponding flow map Φt : R

d →
Rd is locally Lipschitz continuous. Moreover, the existence times T+ (respectively,
T−) are lower (respectively, upper) semi-continuous function of x0. If the vector
field f in (1.10) is smooth, then the corresponding flow map Φt : Rd → Rd is
smooth.

Here, the lower-semicontinuity of T+ means that

T+(x0) ≤ lim inf
x→x0

T+(x),

so that solutions with initial data near x0 exist for essentially as long, or perhaps
longer, than the solution with initial data x0.

We will not prove Theorem 1.20 here, but we indicate why the flow map of
a Lipschitz continuous vector field is Lipschitz continuous. If M is the Lipschitz
constant of f and x(t), y(t) are two solutions of (1.10), then

d

dt
|x− y| ≤ M |x− y|.

It follows from Gronwall’s inequality that if x(0) = x0, y(0) = y0, then

|x(t) − y(t)| ≤ |x0 − y0|e
Mt.

Thus, solutions remain close over a finite time-interval if their initial data are
sufficiently close. After long enough times, however, two solutions may diverge
by an arbitrarily large amount however close their initial data.

Example 1.21. Consider the scalar, linear ODE xt = x. The solutions x(t),
y(t) with initial data x(0) = x0, y(0) = y0 are given by

x(t) = x0e
t, y(t) = y0e

t.

Suppose that [0, T ] is any given time interval, where T > 0. If |x0 − y0| ≤ ǫe−T ,
then the solutions satisfy |x(t)− y(t)| ≤ ǫ for all 0 ≤ t ≤ T , so the solutions remain
close on [0, T ], but |x(t) − y(t)| → ∞ as t → ∞ whenever x0 6= y0.

The local exponential divergence (or contraction) of trajectories of a nonlinear
system may be different in different directions, and is measured by the Lyapunov
exponents of the system. The largest such exponent is called the Lyapunov ex-
ponent of the system. Chaotic behavior occurs in systems with a strictly positive
Lyapunov exponent whose trajectories remain bounded; it is associated with the lo-
cal exponential divergence of trajectories (essentially a linear phenomenon) followed
by a global folding (typically as a result of nonlinearity).

2Here, it is convenient to use a t-subscript in Φt and Ut to indicate dependence on the time

t; the subscript does not denote derivative with respect to t.
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The flow map Φt of an autonomous system has the group property that

Φt ◦ Φs = Φt+s

where ◦ denotes the composition of maps, i.e., solving the ODE for time t + s is
equivalent to solving it for time s, then for time t. Also, Φ0 : Rd → Rd is the
identity map Φ0(x0) = x0.

We remark that the solution map of a non-autonomous IVP,

xt = f(x, t), x(t0) = x0

with solution x(t;x0, t0), is defined by

Φt,t0(x0) = x(t;x0, t0).

The map depends on both the initial and final time, not just their difference, and
satisfies (where defined)

Φt,s ◦ Φs,r = Φt,r.

If x̄ is an equilibrium solution of (1.10), with f(x̄) = 0, then

Φt(x̄) = x̄,

which explains why equilibria are also referred to as fixed points (of the flow map).
We may state a precise definition of the stability of an equilibrium in terms of
the flow map. There are many different, and not entirely equivalent definitions, of
stability; we give only the two simplest and most commonly used ones.

Definition 1.22. An equilibrium x̄ of (1.10) is Lyapunov stable (or stable, for
short) if for every ǫ > 0 there exists δ > 0 such that if |x− x̄| < δ then

|Φt(x) − x̄| < ǫ for all t ≥ 0.

The equilibrium is asymptotically stable if it is Lyapunov stable and there exists
η > 0 such that if |x− x̄| < η then

Φt(x) → x̄ as t → ∞.

Thus, stability means that solutions remain arbitrarily close to the equilibrium
for all t ≥ 0 if they start sufficiently close to the equilibrium, while asymptotic
stability means that, in addition, nearby solutions approach the equilibrium as
t → ∞. Lyapunov stability does not imply asymptotic stability since, for example,
nearby solutions might oscillate about an equilibrium without decaying toward it.
Also, it is not sufficient for asymptotic stability that all solutions with nearby
initial data approach the equilibrium, because they could make large excursions
before approaching the equilibrium, which would violate Lyapunov stability.

One way to organize the study of dynamical systems is by the dimension of
their phase space (following the Trolls of Discworld: one, two, three, many, and
lots). In one or two dimensions, the non-intersection of trajectories imposes strong
topological constraints on their possible behavior. In one dimension, solutions can
only increase or decrease monotonically to an equilibrium or to infinity; in two
dimensions, oscillatory, periodic behavior can occur, but solutions cannot cross
from the inside to the outside (or visa-versa) of a closed, periodic orbit. In three or
more dimensions complex behavior is possible; for example, a trajectory can wander
around a bounded region of phase space without self-intersections in an irregular
and chaotic fashion.



1.5. PHASE SPACE 13

For the most part, we will consider dynamical systems with low-dimensional
phase spaces (of dimension d ≤ 3). The analysis of high-dimensional dynami-
cal systems is usually very difficult, and may require (more or less well-founded)
probabilistic assumptions, or continuum approximations, or some other type of
approach.

Example 1.23. Consider a gas composed of N classical particles of mass m
moving in three space dimensions with an interaction potential V : R3 → R. We
denote the positions of the particles by x = (x1, x2, . . . , xN ) and the momenta by
p = (p1, p2, . . . , pN ), where xi, pi ∈ R3. The Hamiltonian for this system is

H(x, p) =
1

2m

N
∑

i=1

p2i +
1

2

∑

1≤i6=j≤N

V (xi − xj) ,

and Hamilton’s equations are

dxi

dt
=

1

m
pi,

dpi
dt

= −
∑

j 6=i

∂V

∂x
(xi − xj) .

The phase space of this system has dimension 6N . For a mole of gas, we have N =
NA where NA ≈ 6.02×1023 is Avogadro’s number, and this dimension is extremely
large. In kinetic theory, one considers equations for probability distributions of the
particle locations and velocities, such as the Vlasov or Boltzmann equations. One
can also approximate some solutions by partial differential fluid equations, such as
the Euler or Navier-Stokes equations, for suitable averages.

We will mostly consider systems whose phase space is Rd. More generally,
the phase space of a dynamical system may be a manifold. We will not give a
precise definition of a manifold here; roughly speaking, a d-dimensional manifold is
a space that ‘looks’ locally like Rd, with a d-dimensional local coordinate system
about each point, but which may have a different global, topological structure. The
d-dimensional sphere

S
d =

{

x ∈ R
d+1 : |x| = 1

}

is a typical example. Phase spaces that are manifolds arise, for example, if some of
the state variables represent angles.

Example 1.24. The motion of an undamped pendulum of length ℓ in a gravi-
tational field with acceleration g satisfies the pendulum equation

θtt +
g

ℓ
sin θ = 0

where θ ∈ T is the angle of the pendulum to the vertical, measured in radians.
Here, T = R/(2πZ) denotes the circle; angles that differ by an integer multiple of
2π are equivalent. Writing the pendulum equation as a first-order system for (θ, v)
where v = θt ∈ R is the angular velocity, we get

θt = v, vt = −
g

ℓ
sin θ.

The phase space of this system is the cylinder T × R. This phase space may be
‘unrolled’ into R2 with points on the θ-axis identified modulo 2π, but it is often
conceptually clearer to keep the actual cylindrical structure and θ-periodicity in
mind.



14 1. DYNAMICAL SYSTEMS AND ODES

Example 1.25. The phase space of a rotating rigid body, such as a tumbling
satellite, may be identified with the group SO(3) of rotations about its center of
mass from some fixed reference configuration. The three Euler angles of a rotation
give one possible local coordinate system on the phase space.

Solutions of an ODE with a smooth vector field on a compact phase space
without boundaries, such as Sd, exist globally in time since they cannot escape to
infinity (or hit a boundary).

1.6. Bifurcation theory

Most applications lead to equations which depend on parameters that charac-
terize properties of the system being modeled. We write an IVP for a first-order
system of ODEs for x(t) ∈ Rd depending on a vector of parameters µ ∈ Rm as

xt = f(x;µ),

x(0) = x0
(1.16)

where f : Rd × Rm → Rd.
In applications, it is important to determine a minimal set of dimensionless

parameters on which the problem depends and to know what parameter regimes
are relevant, e.g., whether some dimensionless parameters are very large or small.

Example 1.26. The Lorentz system (1.2) for (x, y, z) ∈ R3 depends on three
parameters (σ, r, b) ∈ R

3. We typically think of fixing (σ, b) and increasing r, which
in the original convection problem corresponds to fixing the fluid properties and
the dimensions of the fluid layer and increasing the temperature difference across
it.

If the vector field in (1.16) depends smoothly (e.g., C1 or C∞) on the parameter
µ, then so does the flow map. Explicitly, if x(t;x0;µ) denotes the solution of (1.16),
then we define the flow map Φt by

Φt(x0;µ) = x(t;x0;µ).

Theorem 1.27 (Continuous dependence on parameters). If the vector field
f : Rd × Rm → Rd in (1.16) is smooth, then the corresponding flow map Φt is
smooth.

Bifurcation theory is concerned with changes in the qualitative behavior of the
solutions of (1.16) as the parameter µ is varied. It may be difficult to carry out a full
bifurcation analysis of a nonlinear dynamical system, especially when it depends
on many parameters.

The simplest type of bifurcation is the bifurcation of equilbria. The equilibrium
solutions of (1.16) satisfy

f(x̄;µ) = 0,

so an analysis of equilibrium bifurcations corresponds to understanding how the
solutions x̄(µ) ∈ Rd of this d × d system of nonlinear, algebraic equations depend
upon the parameter µ. We refer to a smooth solution x̄ : I → R

d defined on a
maximal domain I ⊂ Rm as a solution branch or a branch of equilibria.

There is a closely related dynamical aspect concerning how the stability of the
equilibria change as the parameter µ varies. If x̄(µ) is a branch of equilibrium
solutions, then the linearization of the system about x̄ is

xt = A(µ)x, A(µ) = Dxf (x̄(µ);µ) .
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Equilibria lose stability if some eigenvalue λ(µ) of A crosses from the left-half of
the complex plane into the right-half plane as µ varies. By the implicit function
theorem, equilibrium bifurcations are necessarily associated with a real eigenvalue
passing through zero, so that A must be singular at the bifurcation point.

Equilibrium bifurcations are not the only kind of bifurcation, and the dynamic
behavior of a system may change without a change in the equilibrium solutions. For
example, time-periodic solutions may appear or disappear in a Hopf bifurcation,
which occurs where a complex-conjugate pair of complex eigenvalues of A crosses
into the right-half plane, or there may be global changes in the geometry of the
trajectories in phase space, as in a homoclinic bifurcation.

1.7. Discrete dynamical systems

Not only in research, but also in

the everyday world of politics and

economics, we would all be better

off if more people realised that

simple nonlinear systems do not

necessarily possess simple

dynamical properties

Robert May, 1976

A (first-order, autonomous) discrete dynamical system for xn ∈ Rd has the
form

(1.17) xn+1 = f(xn)

where f : Rd → Rd and n ∈ Z is a discrete time variable.
An orbit, or trajectory of (1.17) consist of a sequence of points {xn} that is

obtained by iterating the map f . (These orbits are sequences of points, not curves
like the orbits of a continuous dynamical system.) If fn = f ◦ f ◦ · · · ◦ f denotes
the n-fold composition of f , then

xn = fn(x0).

If f is invertible, then these orbits exists forward and backward in time (for n ∈ Z),
while if f is not invertible, then in general they exist only forward in time (for
n ∈ N0). An equilibrium solution x̄ of (1.17) is a fixed point of f that satisfies

f(x̄) = x̄,

and in that case xn = x̄ for all n.
A linear discrete dynamical system has the form

(1.18) xn+1 = Bxn,

where B is a linear transformation on Rd. The solution is

xn = Bnx0.

The linear system (1.18) has the unique fixed point x̄ = 0 if I −B is a nonsingular
linear map. This fixed point is asymptotically stable if all eigenvalues λ ∈ C of B
lie in the unit disc, meaning that |λ| < 1. It is unstable if B has some eigenvalue
with |λ| > 1 in the exterior of the unit disc.
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The linearization of (1.17) about a fixed point x̄ is

xn+1 = Bxn, B = Df(x̄).

Analogously to the case of continuous systems, we can determine the stability of the
fixed point from the stability of the linearized system under a suitable hyperbolicity
assumption.

Definition 1.28. A fixed point x̄ of (1.17) is hyperbolic if Df(x̄) has no
eigenvalues with absolute value equal to one.

If x̄ is a hyperbolic fixed point of (1.17), then it is asymptotically stable if all
eigenvalues of Df(x̄) lie inside the unit disc, and unstable if some eigenvalue lies
outside the unit disc.

The behavior of even one-dimensional discrete dynamical systems may be com-
plicated and difficult to analyze.

Example 1.29. The biologist May (1976) drew attention to the fact that the
logistic map,

xn+1 = µxn (1− xn) ,

leads to a discrete dynamical system with remarkably intricate behavior, even
though the corresponding continuous logistic ODE

xt = µx(1 − x)

is simple to analyze completely.

Example 1.30. The Collatz function C : N → N is defined by

C(x) =

{

3x+ 1 if x is odd,

x/2 if x is even.

An integer-valued solution of the dynamical system

xn+1 = C(xn)

either grows by a factor close to 3 or collapses by a factor of 2, and always collapses
at least once after it grows. For example, the orbit of the solution with initial data
x0 = 9 is

9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, . . . .

According to the 3x+ 1, or Collatz, conjecture, for every initial data x0 ∈ N there
is some n ∈ N such that xn = 1, after which the iterates are periodic with orbit
(1, 4, 2). This conjecture has been verified numerically for all initial data x0 less
than or equal to 5× 260, but its proof is an open problem.

Example 1.31. Let C̄ = C ∪ ∞ be the Riemann sphere and f : C̄ → C̄ a
rational function. That is, f(z) = p(z)/q(z) where p, q are polynomials, and we use
the natural conventions for 0 and ∞, e.g., 1/z = ∞ if z = 0 and 1/z = 0 if z = ∞.
The dynamics of the iterated maps zn+1 = f(zn) is, in general, very complicated.
Roughly speaking, the Fatou set F ⊂ C̄ of f consists of those points z ∈ C̄ with the
property that all sufficiently nearby points behave similarly to z under iterations
of f . (More precisely, the Fatou set F of f is the maximal open subset of C̄ such
that the family of iterates {fn : n ∈ N} is equicontinuous on F .) The Julia set
J = C̄ \ F of f is the complement of the Fatou set, meaning that points in the
Julia set divide points whose iterates behave differently. The Julia set of a rational
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map is typically not a smooth curve such as a circle, but has an intricate fractal
structure.

Discrete dynamical systems may arise directly as models; for example, in pop-
ulation ecology, xn ∈ R

d might represent the population of the nth generation of d
interacting species. But they also arise from continuous dynamical systems.

Example 1.32. If Φt is the flow map of a continuous dynamical system with
globally defined solutions, then the time-one map Φ1 defines an invertible discrete
dynamical system. The dimension of the discrete system is the same as the dimen-
sion of the continuous one.

Example 1.33. The time-one map of a linear system of ODEs xt = Ax is

B = eA.

Note that if λ is an eigenvalue of A, then eλ is an eigenvalue of eA, so eigenvalues of
A in the left-half of the complex plane, with negative real part, map to eigenvalues
of B inside the unit disc, and eigenvalues of A is the right-half-plane maps to
eigenvalues of B outside the unit disc. Thus, the stability properties of the fixed
point x̄ = 0 in the continuous and discrete descriptions are consistent.

Example 1.34. Consider a non-autonomous system for x(t) ∈ Rd that depends
periodically on time with period 1, say,

xt = f(x, t), f(x, t+ 1) = f(x, t).

We define the corresponding Poincaré map Φ : Rd → Rd by

Φ : x(0) 7→ x(1).

Then Φ defines an autonomous discrete dynamical system of dimension d, which
is one less than the dimension d + 1 of the original system when it is written in
autonomous form. This reduction in dimension makes the dynamics of the Poincaré
map easier to visualize than that the original flow, especially when d = 2. Moreover,
by continuous dependence, trajectories of the original system remain arbitrarily
close over the entire time-interval 0 ≤ t ≤ 1 if their initial conditions are sufficient
close, so replacing the full flow map by the Poincaré map does not lead to any
essential loss of qualitative information.

Fixed points of the Poincaré map correspond to periodic solutions of the original
system, although their minimal period need not be one; for example any solution
of the original system with period 1/n where n ∈ N is a fixed point of the Poincaré
map, as is any equilibrium solution with f(x̄, t) = 0.

Example 1.35. Consider the forced, damped pendulum with non-dimensionalized
equation

xtt + δxt + sinx = γ cosωt

where γ, δ, and ω are parameters, measuring the strength of the damping, the
strength of the forcing, and the (angular) frequency of the forcing, respectively. Or
a parametrically forced oscillator (such as a swing)

xtt + (1 + γ cosωt) sinx = 0.

Here, the Poincaré map Φ : T× R → T× R is defined by

Φ : (x(0), xt(0)) 7→ (x(T ), xt(T )) , T =
2π

ω
.
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Floquet theory is concerned with such time-periodic ODEs, including the stability
of their time-periodic solutions, which is equivalent to the stability of fixed points
of the Poincaré map.

1.8. Rayleigh-Bénard convection

When a layer of fluid in a gravitational field is heated from below, one sees a
sequence of bifurcations as the temperature difference across the layer increases.
This phenomenon is named after the French physicist Henri Bénard, who carried
out the first experiements around 1900, and the English applied mathematician
Lord Rayleigh, who carried out the first stability analysis in 1916.

For small temperature differences, the fluid remains and rest and heat diffuses
from bottom to top. When the temperature difference exceeds a critical value,
one typically sees the onset of steady convection, in which warmer, lighter fluid
rises, cools, and falls back down. At larger temperature differences, one may see
time-periodic behavior arise, and for sufficiently large differences the flow becomes
turbulent.

A relatively simply model for thermal convection is provided by the Boussi-
nesq equations, which consist of the incompressible Navier-Stokes equations for the
velocity and pressure of the fluid, with a suitable approximation for the buoyancy
forces, and a heat equation for the temperature of the fluid. This problem has been
studied extensively, both theoretically and experimentally, as a test case for bifur-
cations in fluid systems; it is also significant for engineering applications as well as
in the modeling of thermal convection in the earth’s atmosphere and mantle.

If ~u(~x, t), p(~x, t), and θ(~x, t) are the fluid velocity, pressure, and temperature,
respectively, as functions of space ~x and time t, then the Boussinesq equations are

~ut + ~u · ∇~u = −
1

ρ0
∇p+ ν∆~u+ αg (θ − θ1)~k,

∇ · ~u = 0,

θt + ~u · ∇θ = κ∆θ.

The first two equations are the incompressible Navier-Stokes equations for (~u, p),
and the third equation is an advection-diffusion equation for θ. The constant ρ0
is a typical density of the fluid, ν is the kinematic viscosity, and κ is the thermal
diffusivity.

The term αg (θ − θ1)~k on the right-hand side of the Navier-Stokes equations

describes the gravitational buoyancy force on the warmer, lighter fluid. Here, ~k is
the unit upward vector in the z-direction, g is the acceleration due to gravity, and α
is the thermal expansion coefficient of the fluid, i.e., the increase in volume of a unit
volume of fluid per unit increase in temperature. The Boussinesq approximation
(which is not entirely systematic) consists of including the resulting small changes
in the fluid density in the gravitational buoyancy force, where they are crucial in
driving the fluid convection, and neglecting them in the inertia terms, where they
typically have little effect relative to the unperturbed density.

We need to supplement the Boussinesq equations with appropriate initial and
boundary conditions. The initial conditions are

~u(~x, 0) = ~u0(~x), θ(~x, 0) = φ0(~x),
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where ~u0 and φ0 are given initial velocity and temperature fields. It is not necessary
to impose initial conditions for the pressure p since the Navier-Stokes equations do
not prescribe the time-derivative pt.

One can impose different kinds of boundary conditions. For simplicity, we
consider convection in a two-dimensional box of length ℓ and height h, and write
the spatial variables as ~x = (x, z) and the fluid velocity as ~u = (u,w). We suppose
that the top of the box (z = h) is maintained at temperature θ1 and the bottom of
the box (z = 0) is maintained at temperature θ0 > θ1. One possible set of boundary
conditions, corresponding to a rigid box with insulated sides, is

~u = 0 on x = 0, ℓ and z = 0, h,

θ = θ0 on z = 0, θ = θ1 on z = h,

θx = 0 on x = 0, ℓ.

An alternative boundary condition for the velocity is uz = w = 0 on z = 0, h.
This boundary condition corresponds to a boundary that is allowed to slip freely
in the x-direction under tangential viscous stresses in the fluid. It is less physically
applicable than the ‘no-slip’ condition ~u = 0, but it is often used because it simplifies
the analysis of the resulting initial-boundary value problem.

This problem depends on several different dimensional parameters. The only
parameter involving the dimension of mass is the density ρ0, which can be removed
by defining a rescaled pressure p̃ = p/ρ0, and only temperature differences are sig-
nificant. This leaves us with 6 parameters from the equations, boundary conditions,
and the geometry of domain:

ν, κ, αg, δθ = θ1 − θ0, h, ℓ.

These parameters depend on 3 dimensions: length (L), time (T), and temperature
(Θ). Denoting the dimensions of a parameter c by [c], we have

[ν] = [κ] =
L2

T
, [αg] =

L

ΘT 2
, [δθ] = Θ, [h] = [ℓ] = L.

The dimensions of the diffusivities ν, κ can be read off from the equations, since
every term appearing in the same equation must have the same dimension, e.g.,

[ν]

L2
= [ν∆] = [∂t] =

1

T
.

We can construct 3 = 6 − 3 independent dimensionless parameters from 6
dimensional parameters depending on 3 dimensions. One possible choice is

Pr =
ν

κ
, Ra =

αg · δθ · h3

νκ
, β =

h

ℓ
.

The Prandtl number Pr measures the relative diffusivity of momentum and heat in
the fluid, the Rayleigh number Ra is a dimensionless temperature difference, and β
is the aspect ratio of the fluid layer. The behavior of the system is independent of the
choice of units and is determined by the values of these dimensionless parameters.
The choice of dimensionless parameters is not unique; for example, instead of the
Rayleigh number, one could use the Grashof number

Gr =
Ra

Pr
=

αg · δθ · h3

ν2
.

The values of these dimensionless parameters may vary over a wide range in
different systems. For example, most early experiments (such as the original ones
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of Bénard) were done in thin fluid layers with aspect ratios close to 0, but Ahlers
and Beringer (1978) were able to carry out convection experiments in liquid helium
with aspect ratios up to 57. The Prandtl number of water at standard conditions
is approximately 7, while the Prandtl number of the highly viscous rocks in the
earth’s mantle is of the order 1025.

Lorenz derived his system of ODEs (1.2) by truncating the Rayleigh-Bénard
equations to equations for three Fourier modes. He looked for solutions of the form

u(x, z, t) = X(t) sin
(πx

ℓ

)

cos
(πz

h

)

,

w(x, z, t) = X(t) cos
(πx

ℓ

)

sin
(πz

h

)

,

θ(x, z, t) = θe(z) + Y (t) cos
(πx

ℓ

)

sin
(πz

h

)

+ Z(t) sin

(

2πz

h

)

,

where
θe(z) = θ0 + (θ1 − θ0)

z

h
is the equilibrium temperature profile in a fluid at rest. These functions satisfy the
incompressibility condition ux + wz = 0 and ‘free’ boundary conditions. Lorenz
then required that appropriate lowest-order Fourier components of the Boussinesq
equations are satisfied, and, after rescaling (X,Y, Z) to (x, y, z), he obtained (1.2).
The parameters σ, r, and b in the Lorentz equation correspond to Pr, Ra, and
β, respectively, and the equilibrium (x, y, z) = (0, 0, 0) corresponds to the state in
which the fluid is at rest.
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