METHODS OF APPLIED MATHEMATICS
Math 207A, Fall 2014
Final Solutions

1. [25%] Consider the following scalar ODE for x(t), depending on a param-
eter —oo < pu < 00,

r, = 2® — i
Find the equilibria and the bifurcation value. Draw phase lines for various
values of p and draw the bifurcation diagram.

Solution

e The equilibria satisfy 22 — p?r = 0, so x = 0 or z = p?. Writing
flz;p) = 2% — pPz, we have f,(z;pn) = 22 — p?, so f(0;p) < 0 and
fo(p?, ) = p? > 0 for p # 0. It follows that x = 0 is asymptotically
stable and x = p? is unstable. For p = 0, there is one semi-stable,
nonyperbolic equilibrium at x = 0.

e Phase lines and the bifurcation diagram are shown in Figure 1.



2. [25%] (a) Explain why the following Lotka-Volterra equations provide
a reasonable model of the interaction between a prey (e.g., rabbits) with
population z(t) > 0 and a predator (e.g., foxes) with population y(t) > 0:

r=x(l-y), y=(@-1y
(b) Find the equilibria, linearize around each one, and classify them.

(c) Integrate the first-order ODE for dy/dx and show that the orbits are
given by the implicit equation f(z)+ f(y) = constant for a suitable function
f(z). Sketch the graph of f, and use this result to sketch the phase plane
of the Lotka-Volterra equations. How do solutions of this system behave in
time?

Solution

e (a) In the absence of predators (y = 0), the prey population grows
exponentially in time (z; = z), and in the absence of prey (z = 0), the
predators have no food and the predator population decays exponen-
tially in time (y; = —y). The growth rate of the prey switches from
positive to negative when the predator population becomes too large
(y > 1), and the growth rate of the predators switches from negative
to positive when there is enough prey (z > 1).

e Alternatively, one can interpret the ODE z; = x —xy as a linear growth
rate of the prey minus the rate at which predators catch the prey, with
the probability of a predator prey encounter being proportional to xy,
and analogously for iy, = —y + xy.

e (b) The equilibria are (z,y) = (0,0) and (z,y) = (1, 1).
e The linearization about (0,0) is
Ty =T, Y = Y,

with eigenvalues A = +1, so (0,0) is a saddle point. The unstable
direction is (1,0) and the stable direction is (0,1).
e Writing x = 1+ 2/, y = 1 + ¢/, we find that The linearization about
(1,1) is
lé = _ylv y; =7,

with eigenvalues A = %4, so (0,0) is a center.
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e We have dy/dx = y;/x; or

dy _(z—-1)y
dr  z(l—y)

Separating variables in this ODE and integrating the result, we get
1— -1
—ydy = / a dx,
Yy x
or (assuming that z,y > 0)

f@)+ fly)=C,  f(r)=1z—logum.

e A plot of f(x) is shown in Figure 2. It is a convex function with a
minimum at x = 1, and f(z) — +oo0 as ¢ — 07 and * — +oo. It
follows that the level sets of f(z)+ f(y) are closed curves surrounding
the equilibrium (1,1). The z and y axes are invariant manifolds for the
flow, so we get the phase plane shown in Figure 2.

e The solutions are time-periodic and oscillate around the stable, but
not asymptotically stable, equilibrium (1, 1). For example, if there are
initially a lot of rabbits and only a few foxes, then the foxes have lots
of food, so the fox population grows. When there are enough foxes, the
rabbit population declines. After a while, there aren’t enough rabbits
to support the foxes, so the fox population declines, and this allows the
rabbit population to recover. The system is then back in a state with
lots of rabbits and a few foxes.



3 [25%] (a) Define what it means for an equilibrium z of a dynamical systems
x; = f(x) to be: (i) (Liapounov) stable; (ii) asymptotically stable.

(b) Write the 2 x 2 system

2, 2
r=r—y—2(2°+y) + ——m—,
Va2 +y?
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i
yp=r+y—yl®+y’) - ——,
Va2 +y?

in polar coordinates r = /22 + 32, § = tan~'(y/z), show that the equilibria
are (z,y) = (0,0) and (z,y) = (1,0), and use the result to sketch the (z,y)-
phase plane of the system.

(c) Show that there is a neighborhood U of the equilibrium (z,y) = (1,0)
such that ®(t)(zo,yo) — (1,0) as t — 400, where ®(t) : R* — R? is the flow
of the system. Is (1,0) a stable equilibrium?

Solution

e (a) (i) The equilibrium Z is stable if for every neighborhood U of z, there
exists a neighborhood V' C U of Z such that ®(t)(zg) € U for all t > 0
whenever xy € V', where ®(t) is the flow map of the dynamical system.
More informally, solutions that are sufficiently close to Z remain close
to .

e (a) (ii) The equilibrium is asymptotically stable if it is stable and there
exists a neighborhood U of z such that ®(¢)(zg) — Z as t — +o0
whenever zg € U.

e (b) Using the ODEs and simplifying the result, we compute that

TTy + YYi 3
ry=——""=7r—71°,
r
TYp — YT
Qtzwzl—cosﬁ.
r

The equilibria are r = 0 and (r,0) = (1,0), corresponding to (z,y) =
(0,0) and (z,y) = (1,0).



e The phase lines for the scalar » and 0 equations are shown in Figure 3.
For any r(0) # 0, we have r(t) — 0 as t — +oo, while 6(¢) moves
counterclockwise round the circle and 6(t) — 0 as t — +o00. This gives
a phase plane like the one sketched in Figure 3. The stable manifold
of (1,0) is the positive z-axis, while the center manifold is the circle
r=1.

e Every solution with initial value in the neighborhood U shown in the
figure approaches (1,0) as ¢ — +o0, but there is no neighborhood V' of
(1,0) such that solutions remain in U for all ¢ > 0 whenever the initial
values are in V| so the equilibrium is not stable. This is because the
orbits make a large excursion into the left-half plane before re-entering
the neighborhood U.



4. [25%] The KPP equation
Up = Uge +u (1 —u)

describes the diffusion of a spatially distributed species with logistic growth,
where u(z,t) is the (nondimensionalized) population of the species at spatial
location x and time t. Traveling wave solutions of the KPP equation, given
by u(x,t) = f(x — ct), satisfy the ODE

ff+ef' +f1=f)=0. (1)
(a) Assume that the wave speed ¢ > 0 is positive. Find the equilibria of this
ODE. Linearize (1) about the equilibra and classify them, depending on c.

(b) Give a physical interpretation of (1) as an ODE for a damped, conserva-
tive system. What is the corresponding potential V' (f)?

(c) Sketch the phase plane of (1) in appropriate ranges of the wave speed
parameter ¢ > 0. For what values of ¢ are there nonnegative, bounded
traveling wave solutions? Give a qualitative sketch of the graph of f(z)
versus z for one of these waves. What is the biological interpretation of these
solutions?

Solution
e (a) The equilibria are (f, f') = (0,0) and (f, f') = (1,0).
e The linearization of (1) about (0,0) is
ff+ef + =0,
with characteristic equation A2 + ¢\ + 1 = 0, and roots

—c++c2 -4
5 )

A:

If 0 < ¢ < 2, then we have a complex conjugate pair of eigenvalues,
with negative real part, and (0,0) is a stable spiral point. If ¢ > 2,
then we have two real and negative eigenvalues (repeated if ¢ = 2) and
(0,0) is a stable node.



e The linearization of (1) about (1,0) is
f"+ef = f=0,
with characteristic equation A2 + ¢\ — 1 = 0, and roots

—ct+Vc2+4

\ =
2

There are two real eigenvalues of opposite signs, so (1,0) is a saddle
point.

e (b) Formally, the ODE is the same as the ODE for a linearly damped
conservative system, with damping constant c,

e+ P oo v =1ty

df 2 3
where we interpret the independent variable as time. This mechanical
analogy is useful in visualizing the phase plane (see Figure 4).

e (c) There is a heteroclinic orbit f(z) consisting of the unstable manifold
of the saddle point (1,0) that is attracted to the stable spiral/node
(0,0), so f(z2) = 1 as 2z — —oo0 and f(z) — 0 as 2z — +oo. In
the interpretation of (b), this orbits falls off the unstable maximum of
V(f) at f =1 and into the potential well around the stable minimum
of V(f) at f = 0. The solution is underdamped if ¢ < 2, when f is
oscillates around the equilibrium f = 0, and then f is negative in the
neighborhood of a spiral point. We only get a nonnegative, bounded
traveling wave when ¢ > 2, corresponding to an overdamped oscillator.

e This travelling wave corresponds to the invasion of an unpopulated
region u = 0 for large positive by a population v = 1 for large
negative .

e For a more detailed analysis of this traveling wave solution, see e.g.,
Lecture 1, Section 3 of these notes:

https://www.math.ucdavis.edu/~hunter/m280_09/applied_math.html



1 Phwe Iines

@]

O
3

— S < M0

0 M2

Brfv roaban disayoun

* ! )(:j/iz
\ N I (unshbie |
\ /
/
N /
AN /
~ /
~o b7 5
— X=0 /{A
(smvle)

Figure 1: Phase lines and bifurcation diagram for Problem 1.
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Figure 2: Plot of f and phase plane for Problem 2.



Figure 3: Phase plane for Problem 3.
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Figure 4: Phase planes for Problem 4.
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