
Methods of Applied Mathematics
Math 207A, Fall 2014

Final Solutions

1. [25%] Consider the following scalar ODE for x(t), depending on a param-
eter −∞ < µ <∞,

xt = x2 − µ2x.

Find the equilibria and the bifurcation value. Draw phase lines for various
values of µ and draw the bifurcation diagram.

Solution

• The equilibria satisfy x2 − µ2x = 0, so x = 0 or x = µ2. Writing
f(x;µ) = x2 − µ2x, we have fx(x;µ) = 2x − µ2, so fx(0;µ) < 0 and
fx(µ2, µ) = µ2 > 0 for µ 6= 0. It follows that x = 0 is asymptotically
stable and x = µ2 is unstable. For µ = 0, there is one semi-stable,
nonyperbolic equilibrium at x = 0.

• Phase lines and the bifurcation diagram are shown in Figure 1.
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2. [25%] (a) Explain why the following Lotka-Volterra equations provide
a reasonable model of the interaction between a prey (e.g., rabbits) with
population x(t) ≥ 0 and a predator (e.g., foxes) with population y(t) ≥ 0:

xt = x(1− y), yt = (x− 1)y.

(b) Find the equilibria, linearize around each one, and classify them.

(c) Integrate the first-order ODE for dy/dx and show that the orbits are
given by the implicit equation f(x) + f(y) = constant for a suitable function
f(x). Sketch the graph of f , and use this result to sketch the phase plane
of the Lotka-Volterra equations. How do solutions of this system behave in
time?

Solution

• (a) In the absence of predators (y = 0), the prey population grows
exponentially in time (xt = x), and in the absence of prey (x = 0), the
predators have no food and the predator population decays exponen-
tially in time (yt = −y). The growth rate of the prey switches from
positive to negative when the predator population becomes too large
(y > 1), and the growth rate of the predators switches from negative
to positive when there is enough prey (x > 1).

• Alternatively, one can interpret the ODE xt = x−xy as a linear growth
rate of the prey minus the rate at which predators catch the prey, with
the probability of a predator prey encounter being proportional to xy,
and analogously for yt = −y + xy.

• (b) The equilibria are (x, y) = (0, 0) and (x, y) = (1, 1).

• The linearization about (0, 0) is

xt = x, yt = −y,

with eigenvalues λ = ±1, so (0, 0) is a saddle point. The unstable
direction is (1, 0) and the stable direction is (0, 1).

• Writing x = 1 + x′, y = 1 + y′, we find that The linearization about
(1, 1) is

x′t = −y′, y′t = x′,

with eigenvalues λ = ±i, so (0, 0) is a center.
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• We have dy/dx = yt/xt or

dy

dx
=

(x− 1)y

x(1− y)
.

Separating variables in this ODE and integrating the result, we get∫
1− y
y

dy =

∫
x− 1

x
dx,

or (assuming that x, y > 0)

f(x) + f(y) = C, f(x) = x− log x.

• A plot of f(x) is shown in Figure 2. It is a convex function with a
minimum at x = 1, and f(x) → +∞ as x → 0+ and x → +∞. It
follows that the level sets of f(x) + f(y) are closed curves surrounding
the equilibrium (1, 1). The x and y axes are invariant manifolds for the
flow, so we get the phase plane shown in Figure 2.

• The solutions are time-periodic and oscillate around the stable, but
not asymptotically stable, equilibrium (1, 1). For example, if there are
initially a lot of rabbits and only a few foxes, then the foxes have lots
of food, so the fox population grows. When there are enough foxes, the
rabbit population declines. After a while, there aren’t enough rabbits
to support the foxes, so the fox population declines, and this allows the
rabbit population to recover. The system is then back in a state with
lots of rabbits and a few foxes.
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3 [25%] (a) Define what it means for an equilibrium x̄ of a dynamical systems
xt = f(x) to be: (i) (Liapounov) stable; (ii) asymptotically stable.

(b) Write the 2× 2 system

xt = x− y − x(x2 + y2) +
xy√
x2 + y2

,

yt = x+ y − y(x2 + y2)− x2√
x2 + y2

,

in polar coordinates r =
√
x2 + y2, θ = tan−1(y/x), show that the equilibria

are (x, y) = (0, 0) and (x, y) = (1, 0), and use the result to sketch the (x, y)-
phase plane of the system.

(c) Show that there is a neighborhood U of the equilibrium (x, y) = (1, 0)
such that Φ(t)(x0, y0)→ (1, 0) as t→ +∞, where Φ(t) : R2 → R2 is the flow
of the system. Is (1, 0) a stable equilibrium?

Solution

• (a) (i) The equilibrium x̄ is stable if for every neighborhood U of x̄, there
exists a neighborhood V ⊂ U of x̄ such that Φ(t)(x0) ∈ U for all t > 0
whenever x0 ∈ V , where Φ(t) is the flow map of the dynamical system.
More informally, solutions that are sufficiently close to x̄ remain close
to x̄.

• (a) (ii) The equilibrium is asymptotically stable if it is stable and there
exists a neighborhood U of x̄ such that Φ(t)(x0) → x̄ as t → +∞
whenever x0 ∈ U .

• (b) Using the ODEs and simplifying the result, we compute that

rt =
xxt + yyt

r
= r − r3,

θt =
xyt − yxt

r2
= 1− cos θ.

The equilibria are r = 0 and (r, θ) = (1, 0), corresponding to (x, y) =
(0, 0) and (x, y) = (1, 0).
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• The phase lines for the scalar r and θ equations are shown in Figure 3.
For any r(0) 6= 0, we have r(t) → 0 as t → +∞, while θ(t) moves
counterclockwise round the circle and θ(t)→ 0 as t→ +∞. This gives
a phase plane like the one sketched in Figure 3. The stable manifold
of (1, 0) is the positive x-axis, while the center manifold is the circle
r = 1.

• Every solution with initial value in the neighborhood U shown in the
figure approaches (1, 0) as t→ +∞, but there is no neighborhood V of
(1, 0) such that solutions remain in U for all t ≥ 0 whenever the initial
values are in V , so the equilibrium is not stable. This is because the
orbits make a large excursion into the left-half plane before re-entering
the neighborhood U .
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4. [25%] The KPP equation

ut = uxx + u (1− u)

describes the diffusion of a spatially distributed species with logistic growth,
where u(x, t) is the (nondimensionalized) population of the species at spatial
location x and time t. Traveling wave solutions of the KPP equation, given
by u(x, t) = f(x− ct), satisfy the ODE

f ′′ + cf ′ + f(1− f) = 0. (1)

(a) Assume that the wave speed c > 0 is positive. Find the equilibria of this
ODE. Linearize (1) about the equilibra and classify them, depending on c.

(b) Give a physical interpretation of (1) as an ODE for a damped, conserva-
tive system. What is the corresponding potential V (f)?

(c) Sketch the phase plane of (1) in appropriate ranges of the wave speed
parameter c > 0. For what values of c are there nonnegative, bounded
traveling wave solutions? Give a qualitative sketch of the graph of f(z)
versus z for one of these waves. What is the biological interpretation of these
solutions?

Solution

• (a) The equilibria are (f, f ′) = (0, 0) and (f, f ′) = (1, 0).

• The linearization of (1) about (0, 0) is

f ′′ + cf ′ + f = 0,

with characteristic equation λ2 + cλ+ 1 = 0, and roots

λ =
−c±

√
c2 − 4

2
.

If 0 < c < 2, then we have a complex conjugate pair of eigenvalues,
with negative real part, and (0, 0) is a stable spiral point. If c ≥ 2,
then we have two real and negative eigenvalues (repeated if c = 2) and
(0, 0) is a stable node.
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• The linearization of (1) about (1, 0) is

f ′′ + cf ′ − f = 0,

with characteristic equation λ2 + cλ− 1 = 0, and roots

λ =
−c±

√
c2 + 4

2
.

There are two real eigenvalues of opposite signs, so (1, 0) is a saddle
point.

• (b) Formally, the ODE is the same as the ODE for a linearly damped
conservative system, with damping constant c,

f ′′ + cf ′ +
dV (f)

df
= 0, V (f) =

1

2
f 2 − 1

3
f 3,

where we interpret the independent variable as time. This mechanical
analogy is useful in visualizing the phase plane (see Figure 4).

• (c) There is a heteroclinic orbit f(z) consisting of the unstable manifold
of the saddle point (1, 0) that is attracted to the stable spiral/node
(0, 0), so f(z) → 1 as z → −∞ and f(z) → 0 as z → +∞. In
the interpretation of (b), this orbits falls off the unstable maximum of
V (f) at f = 1 and into the potential well around the stable minimum
of V (f) at f = 0. The solution is underdamped if c < 2, when f is
oscillates around the equilibrium f = 0, and then f is negative in the
neighborhood of a spiral point. We only get a nonnegative, bounded
traveling wave when c ≥ 2, corresponding to an overdamped oscillator.

• This travelling wave corresponds to the invasion of an unpopulated
region u = 0 for large positive x by a population u = 1 for large
negative x.

• For a more detailed analysis of this traveling wave solution, see e.g.,
Lecture 1, Section 3 of these notes:

https://www.math.ucdavis.edu/~hunter/m280_09/applied_math.html
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Figure 1: Phase lines and bifurcation diagram for Problem 1.
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Figure 2: Plot of f and phase plane for Problem 2.
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Figure 3: Phase plane for Problem 3.
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Figure 4: Phase planes for Problem 4.
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