METHODS OF APPLIED MATHEMATICS
Math 207A, Fall 2014
Midterm: Solutions

1 [25%)] (a) Solve the scalar initial value problem
T =e",
2(0) = o,

for x(t), determine the maximal t-interval of existence of the solution, and
write an expression for the flow map ®(¢) : xg — z(t).

(b) Verify explicitly that, where defined, the flow map you found in (a) has
the group property ®(s) o ®(t) = ®(s +t).

Solution

e (a) Separating variables and integrating, we get

/e_g”dx:/dt—i-C'

—e " =t+C.
The initial condition gives C' = —e™*°, and solving for x we get that
z(t) = —log (e —t).
e The maximal interval of existence is —oco < t < T'(zo) where
T(xg) =€ >0.
The time-t flow map is given by
®(t)(wo) = —log (e7™ — 1) .

(b) We have

D(s) 0 B(t)(mg) = D(s) (—log (e — 1))

O

= —log (e_““"o —t— s)
= O(s +t)(zo).



2 [25%] Suppose that x(t) satisfies the second-order, scalar ODE
i+ Bi+ze” =0 (1)
where 8 > 0 is a constant, and define F(t) by

1 1
E = 51’2 + 56332.

(a) Show that F < 0.
(b) What can you say about the global existence of solutions of the initial

value problem for (1): (i) forward in time; (ii) backward in time?

(c) Give a physical interpretation of (1) and of E.
Solution

e (a) Using the chain rule and the ODE, we get
E=ii+ze”s =i <x n xe‘”2> — _Bi? <.

(b) (i) From (a), E(t) is a decreasing function of ¢, so E(t) < E(0) for
t > 0. Since E — oo as |(z,2)] — oo, it follows that (x, &) remains
bounded, and the extension theorem implies that the solution exists
for all ¢ > 0.

e (b) (ii) We can’t immediately conclude that the solution exists for all
t <0, since E(t) > E(0) for t < 0, and this inequality doesn’t rule out
the possibility that |(x,4)| — oo in finite negative time.

e (c) This ODE describes the one-dimensional motion of a particle with
unit mass and position x(t) at time ¢ in a conservative force field F' =
—V,, with potential V(x) = v’ /2. The particle is subject to linear
damping proportional to its velocity. The function £ is the energy of
the particle (kinetic + potential).



3 [25%] (a) Draw the phase line for the ODE z; = sin x.

(b) Describe qualitatively what bifurcations occur for the scalar ODE
Ty = px +sinx
as the parameter p > 0 is increased from 0. Sketch the bifurcation diagram.

Solution

e (a) There are infinitely many hyperbolic equilibria at x = n7 for n €
Z. Writing f(x) = sinz, we have f'(nm) = cosnm = (—1)", so the
equilibria are stable if n is odd (f’ < 0) and unstable if n is even
(f" > 0). See Figure 2 for the phase line.

e (b) For u > 0, there are only finitely many equilibria, given by the
intersections of the line y = pz with y = —sinz (see Figure 1). Pairs
of stable and unstable equilibria are annihilated in successive saddle-
node bifurcations as p increases from 0.

e The saddle-node bifurcations occur at (z, ) = (*x,, p,) where

{(xn, ptn) :n=0,1,2,...}

are solutions of the transcendental (and not explicitly solvable) equa-
tions f(z,p) =0, fo(z, 1) =0, or

pxr +sinz = 0, w—+cosx =0,

with po > pg > pe > --- > 0 and p, } 0 as n — co. See Figure 2 for
the bifurcation diagram.

e For p > po, where 0 < g < 1 is the parameter value at the last saddle-
node bifurcation (numerically, po & 0.2172), there is only one unstable
equilibrium at z = 0.



Figure 1: Plot of the graphs y = sinz (in blue) and y = px (in colors) for
1 =0,0.05,0.1,0.2172,0.3.
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Figure 2: Phase line of & = px + sinz for p = 0 and its bifurcation diagram
for > 0.



4 [25%] Suppose that z, y satisfy the following 2 x 2 system of ODEs
i = ax +y+ pr(x® +y?),
y=ay —x+ py(r® +y?),

where —o0 < a, u < 0o are constant parameters.

(a) Show that r = /22 + y? satisfies the scalar ODE

P = ar + urs. (3)
(b) Draw the phase lines of (3) in r > 0 for: (i) a,p > 0; (ii) a < 0, u > 0;
(iii) a > 0, u < 05 (iv) a, u < 0.
(c) State how the stability of the equilibrium (z,y) = (0,0) of (2) depends
on (a, 11).
Solution

e (a) Using the chain rule and the ODEs, we compute that (for » > 0)

. T+ yy
r = —
,
ar? + pr?(2? + y?) + ay® + py?(2* + y?)
T

ar® + pur?
r
=ar+ w“?’.

e (b) If a, u have the same sign, then the only equilibrium of the ODE in
r > 0is r = 0. If a, u have opposite signs, then there is an additional

equilibrium at
a
T:TO(GMU)> TO(,U>a) = _;'

flrp,a) = ar + ur®, fr(rypm,a) = a + 3ur?,

e Writing

we have f,.(0,u,a) = a, so the equilibrium r = 0 is asymptotically
stable if a < 0 and unstable if @ > 0. Also, we have f,.(ro, u, a) = —2a,
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so the equilibrium r = rq is asymptotically stable if a > 0 (f, < 0) and
unstable if @ < 0 (f, > 0). These considerations give the phases lines
shown in Figure 3. Alternatively, you can look at the sign of f(r, i, a)
as a function of r to determine where r(t) is increasing or decreasing.

(c) Since r = |(x,y)|, the stability of the equilibrium (z,y) = (0,0) for
(2) is the same as the stability of the equilibrium r = 0 for (3).

If a # 0, then the equilibrium r = 0 is hyperbolic, so it is asymptotically
stable for a < 0 and unstable for a > 0, whatever the value of u.

If @ = 0, then the non-hyperbolic equilibrium r = 0 of 7 = ur3 is
asymptotically stable if ;1 < 0, stable but not asymptotically stable if
1 =0, and unstable if © > 0.
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Figure 3: Phase lines of 7 = ar + pr3.



