
Methods of Applied Mathematics

Math 207A, Fall 2014

Midterm: Solutions

1 [25%] (a) Solve the scalar initial value problem

ẋ = ex,

x(0) = x0,

for x(t), determine the maximal t-interval of existence of the solution, and
write an expression for the flow map Φ(t) : x0 7→ x(t).

(b) Verify explicitly that, where defined, the flow map you found in (a) has
the group property Φ(s) ◦ Φ(t) = Φ(s+ t).

Solution

• (a) Separating variables and integrating, we get
∫

e−x dx =

∫

dt+ C

−e−x = t+ C.

The initial condition gives C = −e−x0 , and solving for x we get that

x(t) = − log
(

e−x0 − t
)

.

• The maximal interval of existence is −∞ < t < T (x0) where

T (x0) = e−x0 > 0.

The time-t flow map is given by

Φ(t)(x0) = − log
(

e−x0 − t
)

.

(b) We have

Φ(s) ◦ Φ(t)(x0) = Φ(s)
(

− log
(

e−x0 − t
))

= − log
(

elog(e
−x0−t) − s

)

= − log
(

e−x0 − t− s
)

= Φ(s + t)(x0).

1



2 [25%] Suppose that x(t) satisfies the second-order, scalar ODE

ẍ+ βẋ+ xex
2

= 0 (1)

where β ≥ 0 is a constant, and define E(t) by

E =
1

2
ẋ2 +

1

2
ex

2

.

(a) Show that Ė ≤ 0.

(b) What can you say about the global existence of solutions of the initial
value problem for (1): (i) forward in time; (ii) backward in time?

(c) Give a physical interpretation of (1) and of E.

Solution

• (a) Using the chain rule and the ODE, we get

Ė = ẋẍ+ xex
2

ẋ = ẋ
(

ẍ+ xex
2

)

= −βẋ2 ≤ 0.

(b) (i) From (a), E(t) is a decreasing function of t, so E(t) ≤ E(0) for
t ≥ 0. Since E → ∞ as |(x, ẋ)| → ∞, it follows that (x, ẋ) remains
bounded, and the extension theorem implies that the solution exists
for all t ≥ 0.

• (b) (ii) We can’t immediately conclude that the solution exists for all
t < 0, since E(t) ≥ E(0) for t < 0, and this inequality doesn’t rule out
the possibility that |(x, ẋ)| → ∞ in finite negative time.

• (c) This ODE describes the one-dimensional motion of a particle with
unit mass and position x(t) at time t in a conservative force field F =
−Vx, with potential V (x) = ex

2

/2. The particle is subject to linear
damping proportional to its velocity. The function E is the energy of
the particle (kinetic + potential).
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3 [25%] (a) Draw the phase line for the ODE xt = sin x.

(b) Describe qualitatively what bifurcations occur for the scalar ODE

xt = µx+ sin x

as the parameter µ ≥ 0 is increased from 0. Sketch the bifurcation diagram.

Solution

• (a) There are infinitely many hyperbolic equilibria at x = nπ for n ∈
Z. Writing f(x) = sin x, we have f ′(nπ) = cosnπ = (−1)n, so the
equilibria are stable if n is odd (f ′ < 0) and unstable if n is even
(f ′ > 0). See Figure 2 for the phase line.

• (b) For µ > 0, there are only finitely many equilibria, given by the
intersections of the line y = µx with y = − sin x (see Figure 1). Pairs
of stable and unstable equilibria are annihilated in successive saddle-
node bifurcations as µ increases from 0.

• The saddle-node bifurcations occur at (x, µ) = (±xn, µn) where

{(xn, µn) : n = 0, 1, 2, . . . }

are solutions of the transcendental (and not explicitly solvable) equa-
tions f(x, µ) = 0, fx(x, µ) = 0, or

µx+ sin x = 0, µ+ cosx = 0,

with µ0 > µ1 > µ2 > · · · > 0 and µn ↓ 0 as n → ∞. See Figure 2 for
the bifurcation diagram.

• For µ > µ0, where 0 < µ0 < 1 is the parameter value at the last saddle-
node bifurcation (numerically, µ0 ≈ 0.2172), there is only one unstable
equilibrium at x = 0.
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Figure 1: Plot of the graphs y = sin x (in blue) and y = µx (in colors) for
µ = 0, 0.05, 0.1, 0.2172, 0.3.
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Figure 2: Phase line of ẋ = µx+ sin x for µ = 0 and its bifurcation diagram
for µ ≥ 0.
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4 [25%] Suppose that x, y satisfy the following 2× 2 system of ODEs

ẋ = ax+ y + µx(x2 + y2),

ẏ = ay − x+ µy(x2 + y2),
(2)

where −∞ < a, µ < ∞ are constant parameters.

(a) Show that r =
√

x2 + y2 satisfies the scalar ODE

ṙ = ar + µr3. (3)

(b) Draw the phase lines of (3) in r ≥ 0 for: (i) a, µ > 0; (ii) a < 0, µ > 0;
(iii) a > 0, µ < 0; (iv) a, µ < 0.

(c) State how the stability of the equilibrium (x, y) = (0, 0) of (2) depends
on (a, µ).

Solution

• (a) Using the chain rule and the ODEs, we compute that (for r > 0)

ṙ =
xẋ+ yẏ

r

=
ax2 + µx2(x2 + y2) + ay2 + µy2(x2 + y2)

r

=
ar2 + µr4

r
= ar + µr3.

• (b) If a, µ have the same sign, then the only equilibrium of the ODE in
r ≥ 0 is r = 0. If a, µ have opposite signs, then there is an additional
equilibrium at

r = r0(a, µ), r0(µ, a) =

√

−
a

µ
.

• Writing

f(r, µ, a) = ar + µr3, fr(r, µ, a) = a + 3µr2,

we have fr(0, µ, a) = a, so the equilibrium r = 0 is asymptotically
stable if a < 0 and unstable if a > 0. Also, we have fr(r0, µ, a) = −2a,
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so the equilibrium r = r0 is asymptotically stable if a > 0 (fr < 0) and
unstable if a < 0 (fr > 0). These considerations give the phases lines
shown in Figure 3. Alternatively, you can look at the sign of f(r, µ, a)
as a function of r to determine where r(t) is increasing or decreasing.

• (c) Since r = |(x, y)|, the stability of the equilibrium (x, y) = (0, 0) for
(2) is the same as the stability of the equilibrium r = 0 for (3).

• If a 6= 0, then the equilibrium r = 0 is hyperbolic, so it is asymptotically
stable for a < 0 and unstable for a > 0, whatever the value of µ.

• If a = 0, then the non-hyperbolic equilibrium r = 0 of ṙ = µr3 is
asymptotically stable if µ < 0, stable but not asymptotically stable if
µ = 0, and unstable if µ > 0.
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Figure 3: Phase lines of ṙ = ar + µr3.
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