PROBLEM SET 1: SOLUTIONS
Math 207A, Fall 2014

1. Mathieu’s equation for z(t) € R is
Ty + (a — 2gcos2t) x = 0,

where a, ¢ are constant parameters. This ODE describes a simple-harmonic
oscillator whose frequency varies periodically in time. Write Mathieu’s equa-
tion as a first-order autonomous system. Is Mathieu’s equation linear? Is
the corresponding autonomous first-order system linear?

Solution

e To write the ODE as an antonomous first order system, we introduce
new variables y = z;, s = t. Then (x,y, s) satisfies the 3 x 3 autonou-
mous system

Iy =Y,
Yy = — (a — 2q cos 2s) x,

St:]_.

e When regarded as a first-order autonomous system, this system is non-
linear (because of the term cos2s - ), even though Mathieu’s equation
is linear.



2. Solve the IVP with z(0) = x, for the following scalar ODEs:

1‘3

(a) x4 = x1/3; (b) x; = z3; (c) & = T

Discuss the existence (local/global) and uniqueness of solutions in each case.

Solution

e (a) The existence-uniqueness theorem implies that a solution has a
unique local continuation so long as x(t) # 0, since z'/3 is continuously
differentiable for z # 0. Moreover, if x(ty) = 0, then the only way to
continue the solution backward in time for ¢ < ¢, is by z(¢) = 0, since

d

ﬁ(xz) = 2243 >0,

so z%(t) decreases as t decreases and x(t) cannot be non-zero for ¢ < t,

e Solving the ODE by separating variables, we get

dx
3

51'2/3 =t+ O,
2 3/2

e [t follows that if zy # 0, then there is a unique global solution

0 (sgnxo)[2(t —t0)/3]%/% if t > to,
X =
0 if ¢ < to,

where ty) = —31’3/3/2 < 0, and

1 if.fE0>0,
SeN o =
BRI Ly it <0,

is the sign of xy. Note that this function is continuously differentiable
and satisfies the ODE for all ¢ € R; in particular, z(ty) = 0.



If 9 = 0, then there are non-unique, global solutions. Either z(¢) =0
for all t € R, or

+2(t —to) /3132 if t > to,

0 if ¢ < to,
where £y > 0 is an arbitrary constant. This non-uniqueness is possible

because f(r) = z'/3 is not a Lipschitz continuous function of z at
xz =0.

(b) The function f(z) = z* is (locally) Lipschitz continuous on R, so a
unique local solution exists for all zy € R.

If xy # 0, then separation and integration of the ODE shows that there
is a unique local solution

1
a:(t):L —00 <t < —

V1= 222t 25
This solution exists globally backward in time, but only locally forward
time. If xy = 0, then there is a unique global solution z(t) = 0.

(c) The function f(z) = 2*/(1 + 2?) is (locally) Lipschitz continuous
on R, so a unique local solution exists for all x5 € R.

If o = 0, then the unique solution is x(t) = 0. If xy # 0, then
separation and integration of the ODE gives

1 1
0

We can’t solve this transcendental equation for x(t) explicitly, but it
defines a global solution of the ODE.

The existence of a global solution is seen most easily from Gronwall’s
inequality:
d 224
—(2%)
dt

R
T

which implies that |z(t)] < |zole!, so solutions remain bounded and
exist globally in time by the extension theorem.




3. A gradient system for z = (x1, %2, ..., 7,) € R" is a system of the form
)%

0:1@-

Tt =-VV(x), or I;=-— (1<i<mn),

where V' : R” — R is a smooth function and V is the gradient with respect
to x.

(a) If z(t) is a solution of this gradient system with x(0) = x, show that
V(x(t)) < V(xg) for all t > 0.
(b) Show that the following system for (z,y) € R? is a gradient system

i =—x+2y —a° v =2x—y—y°
and deduce that solutions of the initial value problem exist for all ¢ > 0. Do
solutions necessarily exist for all t < 07

Solution

e (a) Using the chain rule and the ODE, we get

d dx 9
dtv (x(t)) = VV o IVV]© <0,
so V(z(t)) is a decreasing function of ¢, and V (z(t)) < V(xg) for all

t>0.

e (b) The system can be written as
OV (z,y) . _OV(zy)

or ' dy
where
Ly Ly 1o, 1,
= ot oyt S Sy? — 2ay.
Vi,y) = 72"+ 7y + 527 + 5y” — 2ay
e Suppose that z(0) = zg, y(0) = yo. Since V(z,y) — o0 as |(z,y)| = o0
and V' (z(t),y(t)) < V(zo,yo), solutions remain bounded for ¢ > 0, so
they exist for all £ > 0 by the extension theorem. Explicitly, we have
L, 2 1o 2 2 1
= @12+ Sy 1 —y)2— =
and therefore, for ¢ > 0,

22(t), (1) <1+ /24 4V (z(t),y(t)) < 14 /2 + 4V (x4, y0).-

e For ¢t <0, we have V(x(t),y(t)) > V(xo, o), so we can’t conclude that
solutions remain bounded and exist for all ¢ < 0.



4. Write a MATLAB script to solve the Lorentz equations
t=s(—x+vy), y=rr—y—xz, Z=uxy— Dbz,

with initial conditions x(0) = zo, y(0) = yo, 2(0) = 2o. Use Lorenz’s pa-
rameter values s = 10, r = 28, b = 8/3 to compute the following solutions.
Submit a copy of your script and the two plots.

(a) Plot the trajectory for initial data (zo,yo, 20) = (0,1,0) as a parametric
curve in (z,y, z)-phase space for 0 < ¢ < 30.

(b) Plot, on the same graph, the solutions for z(¢) with 0 < ¢ < 30 and the

two sets of initial data: (i) (xo, yo, 20) = (0, 1,0); (ii) (xo, yo, 20) = (0,1.01,0).

Solution

Figure 1: (a) Plot of the trajectory in phase space.
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Figure 2: (b) Plot of two solutions for z(¢) with slightly differing initial condi-
tions, illustrating the sensitive dependence of solutions on initial conditions.



