
Problem set 1: Solutions

Math 207A, Fall 2014

1. Mathieu’s equation for x(t) ∈ R is

xtt + (a− 2q cos 2t)x = 0,

where a, q are constant parameters. This ODE describes a simple-harmonic
oscillator whose frequency varies periodically in time. Write Mathieu’s equa-
tion as a first-order autonomous system. Is Mathieu’s equation linear? Is
the corresponding autonomous first-order system linear?

Solution

• To write the ODE as an antonomous first order system, we introduce
new variables y = xt, s = t. Then (x, y, s) satisfies the 3 × 3 autonou-
mous system

xt = y,

yt = − (a− 2q cos 2s)x,

st = 1.

• When regarded as a first-order autonomous system, this system is non-
linear (because of the term cos 2s · x), even though Mathieu’s equation
is linear.



2. Solve the IVP with x(0) = x0 for the following scalar ODEs:

(a) xt = x1/3; (b) xt = x3; (c) xt =
x3

1 + x2
.

Discuss the existence (local/global) and uniqueness of solutions in each case.

Solution

• (a) The existence-uniqueness theorem implies that a solution has a
unique local continuation so long as x(t) 6= 0, since x1/3 is continuously
differentiable for x 6= 0. Moreover, if x(t0) = 0, then the only way to
continue the solution backward in time for t < t0 is by x(t) = 0, since

d

dt
(x2) = 2x4/3 ≥ 0,

so x2(t) decreases as t decreases and x(t) cannot be non-zero for t < t0
if x(t0) = 0.

• Solving the ODE by separating variables, we get
∫

dx

x1/3
=

∫

dt+ C,

3

2
x2/3 = t + C,

x(t) =

[

2

3
(t + C)

]3/2

.

• It follows that if x0 6= 0, then there is a unique global solution

x(t) =

{

(sgn x0)[2(t− t0)/3]
3/2 if t > t0,

0 if t ≤ t0,

where t0 = −3x
2/3
0

/2 < 0, and

sgn x0 =

{

1 if x0 > 0,

−1 if x0 < 0,

is the sign of x0. Note that this function is continuously differentiable
and satisfies the ODE for all t ∈ R; in particular, ẋ(t0) = 0.



• If x0 = 0, then there are non-unique, global solutions. Either x(t) = 0
for all t ∈ R, or

x(t) =

{

±[2(t− t0)/3]
3/2 if t > t0,

0 if t ≤ t0,

where t0 ≥ 0 is an arbitrary constant. This non-uniqueness is possible
because f(x) = x1/3 is not a Lipschitz continuous function of x at
x = 0.

• (b) The function f(x) = x3 is (locally) Lipschitz continuous on R, so a
unique local solution exists for all x0 ∈ R.

• If x0 6= 0, then separation and integration of the ODE shows that there
is a unique local solution

x(t) =
x0

√

1− 2x2

0
t
, −∞ < t <

1

2x2

0

.

This solution exists globally backward in time, but only locally forward
time. If x0 = 0, then there is a unique global solution x(t) = 0.

• (c) The function f(x) = x3/(1 + x2) is (locally) Lipschitz continuous
on R, so a unique local solution exists for all x0 ∈ R.

• If x0 = 0, then the unique solution is x(t) = 0. If x0 6= 0, then
separation and integration of the ODE gives

log |x| −
1

2x2
= t + log |x0| −

1

2x2

0

.

We can’t solve this transcendental equation for x(t) explicitly, but it
defines a global solution of the ODE.

• The existence of a global solution is seen most easily from Gronwall’s
inequality:

d

dt
(x2) =

2x4

1 + x2
≤ 2x2,

which implies that |x(t)| ≤ |x0|e
t, so solutions remain bounded and

exist globally in time by the extension theorem.



3. A gradient system for x = (x1, x2, . . . , xn) ∈ R
n is a system of the form

ẋ = −∇V (x), or ẋi = −
∂V

∂xi
(1 ≤ i ≤ n),

where V : Rn → R is a smooth function and ∇ is the gradient with respect
to x.

(a) If x(t) is a solution of this gradient system with x(0) = x0, show that
V (x(t)) ≤ V (x0) for all t ≥ 0.

(b) Show that the following system for (x, y) ∈ R
2 is a gradient system

ẋ = −x+ 2y − x3, ẏ = 2x− y − y3,

and deduce that solutions of the initial value problem exist for all t ≥ 0. Do
solutions necessarily exist for all t < 0?

Solution

• (a) Using the chain rule and the ODE, we get

d

dt
V (x(t)) = ∇V ·

dx

dt
= −|∇V |2 ≤ 0,

so V (x(t)) is a decreasing function of t, and V (x(t)) ≤ V (x0) for all
t ≥ 0.

• (b) The system can be written as

ẋ = −
∂V (x, y)

∂x
, ẏ = −

∂V (x, y)

∂y

where

V (x, y) =
1

4
x4 +

1

4
y4 +

1

2
x2 +

1

2
y2 − 2xy.

• Suppose that x(0) = x0, y(0) = y0. Since V (x, y) → ∞ as |(x, y)| → ∞
and V (x(t), y(t)) ≤ V (x0, y0), solutions remain bounded for t ≥ 0, so
they exist for all t ≥ 0 by the extension theorem. Explicitly, we have

V (x, y) =
1

4
(x2 − 1)2 +

1

4
(y2 − 1)2 + (x− y)2 −

1

2
,

and therefore, for t ≥ 0,

x2(t), y2(t) ≤ 1 +
√

2 + 4V (x(t), y(t)) ≤ 1 +
√

2 + 4V (x0, y0).

• For t < 0, we have V (x(t), y(t)) ≥ V (x0, y0), so we can’t conclude that
solutions remain bounded and exist for all t < 0.



4. Write a MATLAB script to solve the Lorentz equations

ẋ = s(−x+ y), ẏ = rx− y − xz, ż = xy − bz,

with initial conditions x(0) = x0, y(0) = y0, z(0) = z0. Use Lorenz’s pa-
rameter values s = 10, r = 28, b = 8/3 to compute the following solutions.
Submit a copy of your script and the two plots.

(a) Plot the trajectory for initial data (x0, y0, z0) = (0, 1, 0) as a parametric
curve in (x, y, z)-phase space for 0 ≤ t ≤ 30.
(b) Plot, on the same graph, the solutions for x(t) with 0 ≤ t ≤ 30 and the

two sets of initial data: (i) (x0, y0, z0) = (0, 1, 0); (ii) (x0, y0, z0) = (0, 1.01, 0).

Solution
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Figure 1: (a) Plot of the trajectory in phase space.
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Figure 2: (b) Plot of two solutions for x(t) with slightly differing initial condi-
tions, illustrating the sensitive dependence of solutions on initial conditions.


