PROBLEM SET 2 Math 207A, Fall 2014

1. Determine the linearized stability of the equilibrium (x, y, z) = (0, 0, 0) of the Lorentz equations

$$x_t = \sigma(y - x),$$

$$y_t = rx - y - xz,$$

$$z_t = xy - \beta z,$$

where $\sigma, r, \beta > 0$. How does the stability change as r increases from 0?

2. Suppose that A is the 3×3 Jordan block

$$A = \left(\begin{array}{ccc} \lambda & 1 & 0\\ 0 & \lambda & 1\\ 0 & 0 & \lambda \end{array}\right).$$

(a) Compute e^{tA} from the power series definition. HINT. Write $A = \lambda I + N$ and compute e^{tN} .

(b) Let $\epsilon > 0$. Solve the 3×3 linear system

$$x_t = -\epsilon x + y, \qquad y_t = -\epsilon y + z, \qquad z_t = -\epsilon z$$
 (1)

subject to the initial condition $x(0) = x_0$, $y(0) = y_0$, $z(0) = z_0$. How do x(t), y(t), z(t) behave as $t \to \infty$? What is the maximum value of x(t) for $0 \le t < \infty$ if $(x_0, y_0, z_0) = (0, 0, 1)$?

(c) Suppose that (1) is the linearization of a 3×3 nonlinear system $\vec{x}_t = \vec{f}(\vec{x})$ at an equilibrium $\vec{x} = 0$. Do you expect (1) to provide a good approximation of solutions of the nonlinear system with initial condition $\vec{x}(0) = \epsilon \vec{y}_0$ when ϵ is small?

3. Write the following 2×2 system for (x, y)

$$\dot{x} = y + \mu x (x^2 + y^2)$$
$$\dot{y} = -x + \mu y (x^2 + y^2)$$

in polar coordinates (r, θ) , where $x = r \cos \theta$, $y = r \sin \theta$. Sketch the phase planes for: (a) $\mu < 0$; (b) $\mu = 0$; (c) $\mu > 0$. Discuss the linear and nonlinear stability of the equilibrium (x, y) = (0, 0). Is the equilibrium hyperbolic?

4. (a) Prove the following version of Gronwall's inequality: If u(t) is a differentiable function on \mathbb{R} such that

$$\dot{u}(t) \le a + bu(t)$$
 for all $t \ge 0$, $u(0) = u_0$,

where a, b, u_0 are constants, then

$$u(t) \le u_0 e^{bt} + \frac{a}{b} \left(e^{bt} - 1 \right) \quad \text{for all } t \ge 0.$$

(b) Prove that if $f : \mathbb{R}^n \to \mathbb{R}^n$ is globally Lipschitz continuous, then the solution x(t) of the IVP

$$x_t = f(x), \qquad x(0) = x_0$$

grows at most exponentially in time and exists for all $-\infty < t < \infty$.

5. The Hénon map on \mathbb{R}^2 is defined by

$$x_{n+1} = a - x_n^2 + by_n,$$

$$y_{n+1} = x_n,$$

where a, b are constants. Write a MATLAB script to compute iterates of this map. Plot 10^4 iterates in the orbit with initial condition $x_0 = 1, y_0 = 0$ for the parameter values a = 1.4, b = 0.3. Discuss the long-time behavior of your solution.