PROBLEM SET 2
Math 207A, Fall 2014

1. Determine the linearized stability of the equilibrium (z,y, z) = (0,0, 0) of
the Lorentz equations

xtza(y—x),
Y =11 — Yy — 2,

2t = TY — 627
where o, 7,3 > 0. How does the stability change as r increases from 07

Solution

e The linearization of the system at (0,0,0) is

x -0 0o 0 T
Y = r —1 0 Y
z 0O 0 -—-p z

e The characteristic equation det(A — AI) = 0 for the matrix A in the
linearized system is

[(A+o)A+1)—ro](A+5) =0,

with roots A = —f < 0 and

\ —(1+0)E+/(1+0)2+40(r—1)
5 :

Both of these roots are real and negative if 0 < r < 1, since
0<(1—0)+dor=(1+0)+4do(r—1) < (1+0)?
and one root is negative and one positive if r > 1.

e [t follows that (0, 0, 0) is asymptotically stable if 0 < r < 1 and unstable
if » > 1. Since A is singular at »r = 1, a bifurcation of equilibria
can occur as r increases through 1. (In fact, one can show that a
supercritical pitchfork bifurcation occurs at r = 1.)



2. Suppose that A is the 3 x 3 Jordan block

A1 0
A=1 0 X 1
0 0 A

(a) Compute e from the power series definition. HINT. Write A = A\l + N

and compute e*V.

(b) Let € > 0. Solve the 3 x 3 linear system
Ty = —€x + v, Y = —ey + 2, Z = —€z (1)

subject to the initial condition x(0) = z¢, y(0) = yo, 2(0) = 2. How do
x(t), y(t), z(t) behave as t — oo? What is the maximum value of z(t) for
0 <t < ooif (zg,y0,20) = (0,0,1)?

(¢) Suppose that (1) is the linearization of a 3 x 3 nonlinear system &, = ()
at an equilibrium Z = 0. Do you expect (1) to provide a good approximation
of solutions of the nonlinear system with initial condition #(0) = ey when €
is small?

Solution

e (a) First, note that AI and N commute (the identity matrix commutes
with every matrix), so
GHATHN) _ AT N
e Since I" = I, we have
1 1
e = (1+t/\+§t2/\2+-~-+—'t”)\”+...) I=eMl.
n!

e The matrix N is nilpotent (meaning that a power of N is zero):

010 00 1
N=|001], N’=100 0],
000 000

and N™ =0 for n > 3. It follows that
1
eN =T 4+tN + §t2N2
1t /2
=1 01 ¢
00 1



e Combining these results, we get

t2/2
t
1

o~
b
>
o~
O O =

t
1
0

e (b) Either back-substitute and solve first-order ODEs for z, y, and z,

Oor use
x(t) 1t t2/2 Ty
y(t) | =e {01 ¢ Yo
2(t) 00 1 20

Then z(t),y(t), 2(t) — 0 as t — oo since e~ te™ t?e — 0.

o If xg=1y9=0, 2o =1, then
1
t:_t2 —et
o(t) = 2,

whose maximum value is

Thus, even though z(t) — 0 as t — oo, the solution has large transient
behavior when € is small.

e (c) If 25 = O(€), then the solution for x(t) grows to O(e~1). We would
not expect the linearization of the nonlinear system to remain valid in
this circumstance.

Remark. A matrix is said to be normal if it commutes with its transpose
(or, for complex matrices, its Hermitian conjugate). Matrices with nontrivial
Jordan blocks, like A in this problem, are not normal, and evolution equa-
tions with nonnormal matrices (or nonnormal linear operators) may have
solutions with large transient growths. This behavior is not apparent from
the eigenvalues (or spectrum) of A alone, but one can analyze it further by
use of the notion of the pseudo-spectrum of a matrix (or linear operator).



3. Write the following 2 x 2 system for (z,y)
&=y + px(a® +y°)
=~ +puy(a® +y°)

in polar coordinates (r,#), where x = rcosf, y = rsinf. Sketch the phase
planes for: (a) u < 0; (b) = 0; (¢) > 0. Discuss the linear and nonlinear
stability of the equilibrium (z,y) = (0,0). Is the equilibrium hyperbolic?

Solution
e (a) Writing
r =22+ 12, 0 = tan~? <£> ,
x
we compute that

. xktyy S TY — YT
== ur, 9—72—
T T

—1.

e Thus, if u # 0, then the orbits of the system consist of the equilibrium
(x,y) = (0,0) and counter-clockwise spirals, directed inward toward
the origin if 4 < 0 and outward toward infinity if p > 0. If p = 0,
then the orbits consist of the equilibrium (0,0) and counter-clockwise
circles.

e Suppose that 7o = r(0) > 0. It follows from the ODE for r that: (a)
if 4 < 0, then r(t) — 0 as t — o0, so (0,0) is globally asymptotically
stable; (b) if © = 0, then r(t) = rq is constant, so (0,0) is stable but
not asymptotically stable; (c) if g > 0, then r(¢) — oo in finite positive
time, so (0,0) is unstable.

e The linearization of the system at (0,0) is the = 0 system

<;)t:(—01 é)(i)

which has eigenvalues A = +i. These eigenvalues have zero real part,
so the equilibrium is not hyperbolic.

Remark. As this example illustrates, in general, one can’t conclude anything
about the stability of a nonhyperbolic equilibrium from its linearized stability.



4. (a) Prove the following version of Gronwall’s inequality: If u(t) is a
differentiable function on R such that

u(t) < a+bu(t) forallt>0, u(0) = uy,
where a, b, uy are constants, then

u(t) < uge” + % (e —1) forallt>0.

(b) Prove that if f : R™ — R™ is globally Lipschitz continuous, then the
solution z(t) of the IVP

xt:f(x)v [L‘(O) = Zo
grows at most exponentially in time and exists for all —oco < t < 0.

Solution

e Since e7% > 0, we have

d
dt
It follows that, for ¢t > 0,

[e™"u] = e (4 — bu) < ae™™.

t
e Pu(t) = ug +/ 4 [e"u(s)] ds
o ds
t
< uy +/ ae™* ds
0

and multiplication of this inequality by e” gives the result.

e Since f is globally Lipschitz continuous, we have for all x € R™ that

[f(@)] < [fO)] + [f(z) = FO) < C + Mz,

where C' = |f(0)| and M is a Lipschitz constant for f.



e Taking the scalar product of the ODE with 2z, we get that

d dz
a\xf =2z - i 2z - f(x).

It follows from the Cauchy-Schwarz inequality and the global Lipschitz
continuity of f that

d
EMZ <20z |f(z)| < 20| + 2M|z]* < C (1 + |z]?) + 2M |z,
so Gronwall’s inequality gives

C
() < faol* + 5 (e = 1),
B
for all t > 0, where B = C'+ 2M. Changing t — —t and using the
same argument, we get the corresponding estimate for ¢t < 0, with e
replaced by eBl,

e Since the solution remains bounded on every time interval (=7, 7T'), the
extension theorem implies that the solution exists for all —oo <t < oo.



5. The Hénon map on R? is defined by

Tni1 = a — a5, + by,

Yn+1 = Tn,
where a, b are constants. Write a MATLAB script to compute iterates of
this map. Plot 10* iterates in the orbit with initial condition g = 1, yo = 0

for the parameter values a = 1.4, b = 0.3. Discuss the long-time behavior of
your solution.

Solution
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Figure 1: Plot of the first 10,000 iterates of the Hénon map.
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Figure 2: Detail of the Hénon iterates illustrating the transverse Cantor-set
structure of its attractor.



