
Problem set 3: Solutions

Math 207A, Fall 2014

1. Find the fixed points of the Hénon map

xn+1 = a− x2

n
+ byn, yn+1 = xn,

where a, b are positive constants, and determine their linearized stability.

Solution

• The fixed points (x̄, ȳ) satisfy

x̄ = a− x̄2 + bȳ, ȳ = x̄,

which gives
x̄2 − (b− 1)x̄− a = 0.

This quadratic equation has two real roots for positive a, so there are
two fixed points (x̄, ȳ) = (c±, c±), where

c±(a, b) =
b− 1±

√

(b− 1)2 + 4a

2
,

so that c+ > 0 and c− < 0.

• The linearization of the Hénon map at (xn, yn) = (c, c) is

xn+1 = −2cxn + byn, yn+1 = xn.

The eigenvalues λ of the Jacobian matrix are given by
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= 0,

or λ2 + 2cλ− b = 0. It follows that

λ = c±
√
c2 + b.

These eigenvalues are real since b > 0.



• The equilibrium is asymptotically stable if both eigenvalues satisfy
|λ| < 1, and unstable if at least one eigenvalue satisfies |λ| > 1. For
fixed 0 < c < 1/2, the eigenvalue λ = c+

√
c2 + b has the largest abso-

lute value, is positive and increases through 1 at b = 1 − 2c. For fixed
−1/2 < c < 0, the eigenvalue λ = c−

√
c2 + b has the largest absolute

value, is negative and decreases through −1 at b = 1 + 2c.

• It follows that the equilibrium (c+, c+) is stable if 0 < c+ < 1/2 and
0 < b < 1 − 2c+, otherwise it is unstable, while (c−, c−) is stable if
−1/2 < c− < 0 and 0 < b < 1 + 2c−, otherwise it is unstable.



2. (a) Sketch the phase portraits of the following ODEs on R:

(i) xt = 1 + x− 2x3; (ii) xt = sin(x2).

(b) Sketch the phase portraits of the following ODEs on the circle T:

(i) xt = 1− 2 sinx; (ii) xt = 2− sin x.

Solution

• We omit phase plots and only describe the equilibria and directions of
the orbits.

• (a) (i) We have

f(x) = 1 + x− 2x3 = (1− x)(1 + 2x+ 2x2).

Since 1+2x+2x2 has no real roots, there is a single equilibrium x = 1.
Moreover, f(x) > 0 for x < 1 and f(x) < 0 for x > 1.

• (ii) We have f(x) = sin(x2) = 0 if x = 0 or x = ±√
nπ for n ∈ N.

Moreover f ′(x) = 2x cos(x2), so

f ′
(

±
√
nπ

)

= ±2nπ cos(nπ) = ±2nπ(−1)n.

It follows that x = 0 is non-hyperbolic and semi-stable, x =
√
nπ is

asymptotically stable if n is odd and unstable if n is even, and x =
−√

nπ is asymptotically stable if n is even and unstable if n is odd.

• (b) (i) We have f(x) = 1− 2 sinx = 0 if x = π/6, 5π/6. Also, f(x) < 0
for π/6 < x < 5π/6, so the corresponding orbit is clockwise, and f(x) >
0 for 5π/6 < x < 2π, so the corresponding orbit is counter-clockwise.
The equilibrium x = π/6 is asymptotically stable and x = 5π/6 is
unstable.

• (ii) We have 2− sin x > 0 for all x ∈ T, so the system has no equilibria,
and the orbits are clockwise.



3. (a) Solve the IVP for the ODE

xt + x = sin t.

Sketch the orbits in (t, x)-phase space.

(b) Compute the Poincaré map P : R → R that maps the initial value x(0)
to x(2π). Indicate some points and their images in your sketch from (a).

(c) Find the fixed point of the Poincaré map and determine its stability.
What solution of the original ODE does this fixed point correspond to to?

Solution
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Figure 1: (a) Orbits for 0 ≤ t ≤ 2π and −1 ≤ x ≤ 1.

• (b) Multiplying the ODE by the integrating factor et and integrating,
we get

etx(t) = x0 +

∫

t

0

es sin s ds,



which gives

x(t) =

(

x0 +
1

2

)

e−t +
1

2
(sin t− cos t) .

The Poincaré map xn+1 = P (xn) is given by

xn+1 = e−2π

(

xn +
1

2

)

− 1

2
.

For example, P (0) = (e−2π − 1)/2.

• The fixed point x̄ of P satisfies

x̄ = e−2π

(

x̄+
1

2

)

− 1

2
,

so x̄ = −1/2. It is asymptotically stable since

|P ′(x̄)| = e−2π < 1.

• The fixed point corresponds to the 2π-periodic solution of the ODE

x(t) =
1

2
(sin t− cos t) .



4. (a) Measles is a highly infectious disease with lifelong immunity after re-
covery. Explain why the following ODEs provide a simple model of a measles
epidemic in a population ofN individuals with S(t) susceptible members, I(t)
infected (and infectious) members, and R(t) recovered (and non-infectious)
members:

St = − β

N
IS, It =

β

N
IS − γI, Rt = γI.

What are the interpretations of the positive constants β, γ? What are their
dimensions? Show that these ODEs imply that S(t) + I(t) + R(t) = N
remains constant in time.

(b) Suppose that there is no recovery from the disease (γ = 0 and R = 0).
Derive a logistic equation for I(t), sketch its phase line, and discuss the long-
time behavior of solutions as t → ∞. How would the long-time behavior
differ if γ > 0?

Solution

• (a) If infected and susceptible individuals encounter each other ran-
domly and uniformly in time, then the probability per unit time of an
encounter is proportional to IS. The constant β measures the prob-
ability per encounter that the susceptible individual is infected. The
constant γ measures the rate at which infected individual recover. Both
β and γ have dimensions of (time)−1.

• We have S + I +R = constant, since

d

dt
(S + I +R) = − β

N
IS +

β

N
IS − γI + γI = 0.

• (b) If γ = R = 0, then S = N − I, and

It =
β

N
I(N − I).

The equilibrium I = N in which all individuals are infected is asymp-
totically stable, and I(t) → N as t → ∞ (provided that there are
initially some infected individuals so I(0) > 0).

• If β, γ > 0, then every individual will eventually get infected and re-
cover, so S(t), I(t) → 0 and R(t) → N as t → ∞.



5. Consider a scalar autonomous ODE xt = f(x) where f : R → R is
continuously differentiable.

(a) Prove that a hyperbolic equilibrium x̄ ∈ R is asymptotically stable if
f ′(x̄) < 0 and unstable if f ′(x̄) > 0. Hint. Use a Lyapunov function
V (x) = (x− x̄)2/2.

(b) In each of the following cases, give an example of such an ODE with a
non-hyperbolic equilibrium that is: (i) asymptotically stable; (ii) unstable;
(iii) stable but not asymptotically stable.

Solution

• (a) We have
d

dt
V (x) = (x− x̄) ẋ = (x− x̄) f(x).

Since f(x̄) = 0 and f is differentiable at x̄, the mean value theorem
implies that there exists ξ = ξ(x) between x̄ and x such that

f(x) = f(x)− f(x̄) = f ′(ξ) (x− x̄) ,

so
d

dt
V (x) = 2f ′(ξ)V (x).

• Since f ′(x̄) 6= 0 and f ′ is continuous at x̄, there exists δ > 0 such that

|f ′(x)− f ′(x̄)| ≤ 1

2
|f ′(x̄)|

for |x− x̄| ≤ δ.

• First, suppose that f ′(x̄) = −a < 0, which implies that f ′(x) ≤ −a/2
for |x − x̄| ≤ δ. We claim that if |x(0) − x̄| ≤ δ, then |x(t) − x̄| ≤ δ
for all t ≥ 0. If not, there exists some earliest time t0 ≥ 0 after which
|x(t) − x̄| exceeds δ. Then |x(t0) − x̄| = δ and there is a sequence of
times tn > t0 such that |x(tn) − x̄| > δ and tn ↓ t0 as n → ∞. But
V (x(t)), and therefore |x(t)− x̄|, is strictly decreasing at t = t0, since

d

dt
V (x(t))

∣

∣

∣

∣

t=t0

≤ −1

2
aδ2 < 0,

so there exists η > 0 such that |x(t)− x̄| < δ for t0 < t < t0 + η, which
is a contradiction.



• It follows that if |x(0)− x̄| ≤ δ, then f ′(ξ) < −a/2 and

d

dt
V (x) ≤ −aV (x)

for all t ≥ 0. Gronwall’s inequality implies that

V (x(t)) ≤ V (x(0))e−at

for all t ≥ 0, which shows that x̄ is asymptotically stable. Explicitly,
given ǫ > 0, we have |x(t)− x̄| < ǫ for all t ≥ 0 whenever |x(0)− x̄| <
η where η = min(δ, ǫ), so x̄ is stable, and x(t) → x̄ as t → ∞ if
|x(0) − x̄| < δ, since V (x(t)) → 0 as t → ∞, so x̄ is asymptotically
stable.

• On the other hand, if f ′(x̄) = a > 0, then a similar argument backward
in time (t 7→ −t) shows that if |x(0)− x̄| < δ, then

V (x(t)) ≤ V (x(0))eat

for all t ≤ 0 provided that |x(0)− x̄| < δ. Applying this result to the
solution x(t+ T ), where T ≥ 0 is an arbitrary time shift, we have

V (x(t + T )) ≤ V (x(T ))eat,

for all t ≤ 0, provided that |x(T )− x̄| < δ, and setting t = −T , we get

V (x(0)) eaT ≤ V (x(T )).

This result shows that |x(t) − x̄| > δ/2 for sufficiently large t > 0
however close to x̄ we choose x(0) 6= x̄, meaning that x̄ is not stable.

• (b) Examples with a non-hyperbolic equilibrium at x = 0 are:

(i) xt = −x3 (asymptotically stable);

(ii) xt = x3 (unstable);

(iii) xt = 0 (stable but not asymptotically stable).

A more interesting example for (iii) is xt = f(x) where

f(x) =

{

x3 sin(1/x) if x 6= 0,

0 if x = 0.

This has infinitely many hyperbolic equilibria at x = 1/(nπ), for n ∈
Z, which alternate between asymptotically stable and unstable and
accumulate at the stable but not asymptotically stable non-hyperbolic
equilibrium x = 0.


