PROBLEM SET 3: SOLUTIONS
Math 207A, Fall 2014

1. Find the fixed points of the Hénon map
— 2 —
Tpnt1 = a — T, + bym Yn+1 = Tn,
where a, b are positive constants, and determine their linearized stability.
Solution
e The fixed points (Z,y) satisfy
T=a— 1+ by, Y =7,

which gives
72— (b—1)7—a=0.

This quadratic equation has two real roots for positive a, so there are
two fixed points (z,y) = (¢, c+), where

b—1++/(b—1)2+4a
C:I:(a7b): (2 ) ;

so that ¢y > 0 and c_ < 0.
e The linearization of the Hénon map at (z,,y,) = (¢, c) is
Tpi1 = —2¢x, + by, Ynil = Tn.
The eigenvalues A of the Jacobian matrix are given by

—2c— )\ b
1 —A

or A2 +2c\ —b=0. It follows that

A=c+VcZ+0b.

These eigenvalues are real since b > 0.



e The equilibrium is asymptotically stable if both eigenvalues satisfy
|A| < 1, and unstable if at least one eigenvalue satisfies |A| > 1. For
fixed 0 < ¢ < 1/2, the eigenvalue A = ¢+ v/¢? + b has the largest abso-
lute value, is positive and increases through 1 at b = 1 — 2¢. For fixed
—1/2 < ¢ < 0, the eigenvalue A = ¢ — v/¢2 + b has the largest absolute
value, is negative and decreases through —1 at b =1 + 2c.

e It follows that the equilibrium (c,cy) is stable if 0 < ¢; < 1/2 and
0 < b < 1-—2c,, otherwise it is unstable, while (c_,c_) is stable if
—1/2<c_<0and 0 <b <1+ 2c_, otherwise it is unstable.



2. (a) Sketch the phase portraits of the following ODEs on R:

(1) z=1+z— 2% (ii) x; = sin(z?).

(b) Sketch the phase portraits of the following ODEs on the circle T:

(i) x;=1-—2sinz; (il) =y =2—sinx.

Solution

We omit phase plots and only describe the equilibria and directions of
the orbits.

(a) (i) We have
flx)=1+z—-22° = (1 —2)(1 + 22 + 227).

Since 14 2z + 22?2 has no real roots, there is a single equilibrium z = 1.
Moreover, f(xz) >0 for z < 1 and f(z) <0 for x > 1.

(i) We have f(z) = sin(z?) = 0if x = 0 or z = ++/n7 for n € N.
Moreover f’(z) = 2z cos(x?), so

f (j:\/%) = 4+2n7 cos(nm) = £2nm(—1)"

It follows that « = 0 is non-hyperbolic and semi-stable, z = /nx is
asymptotically stable if n is odd and unstable if n is even, and z =
—y/nm is asymptotically stable if n is even and unstable if n is odd.

(b) (i) We have f(z) =1—2sinz = 0if z = 7/6,57/6. Also, f(z) <0
for m/6 < x < 57/6, so the corresponding orbit is clockwise, and f(z) >
0 for 57/6 < x < 27, so the corresponding orbit is counter-clockwise.
The equilibrium =z = 7/6 is asymptotically stable and = = 57/6 is
unstable.

(ii)) We have 2 —sinx > 0 for all x € T, so the system has no equilibria,
and the orbits are clockwise.



3. (a) Solve the IVP for the ODE
Ty +x =sint.

Sketch the orbits in (¢, z)-phase space.

(b) Compute the Poincaré map P : R — R that maps the initial value z(0)
to z(2m). Indicate some points and their images in your sketch from (a).

(c¢) Find the fixed point of the Poincaré map and determine its stability.
What solution of the original ODE does this fixed point correspond to to?

Solution

Figure 1: (a) Orbits for 0 <¢ < 27 and —1 < x < 1.

e (b) Multiplying the ODE by the integrating factor e’ and integrating,
we get

¢
elx(t) = g +/ e’sin s ds,
0



which gives

1 1
z(t) = (xo + 5) e '+ 3 (sint — cost).

The Poincaré map xz,.1; = P(x,) is given by

—on 1 1
Tpe1 = € 2 (xn+§)—§

For example, P(0) = (e *" — 1)/2.

e The fixed point = of P satisfies

so & = —1/2. Tt is asymptotically stable since
|P'(z)| = e " < 1.
e The fixed point corresponds to the 27-periodic solution of the ODE

1
x(t) = 5 (sint — cost).



4. (a) Measles is a highly infectious disease with lifelong immunity after re-
covery. Explain why the following ODEs provide a simple model of a measles
epidemic in a population of N individuals with S(t) susceptible members, I(t)
infected (and infectious) members, and R(t) recovered (and non-infectious)
members:

s s

S L =218—~I — 1.
St NS’ t NS e Rt 7

What are the interpretations of the positive constants 3, v7 What are their
dimensions? Show that these ODEs imply that S(¢) + I(t) + R(t) = N
remains constant in time.

(b) Suppose that there is no recovery from the disease (7 = 0 and R = 0).
Derive a logistic equation for I(t), sketch its phase line, and discuss the long-
time behavior of solutions as ¢t — oo. How would the long-time behavior
differ if v > 07

Solution

e (a) If infected and susceptible individuals encounter each other ran-
domly and uniformly in time, then the probability per unit time of an
encounter is proportional to 5. The constant § measures the prob-
ability per encounter that the susceptible individual is infected. The
constant v measures the rate at which infected individual recover. Both
B and « have dimensions of (time)~!.

e We have S + I + R = constant, since

d _ B s _
a(S+I+R)_ NIS+N]S vl +~I =0.

o (b)Ify=R=0,then S=N —1, and

I = %I(N — 1.
The equilibrium I = N in which all individuals are infected is asymp-
totically stable, and I(t) — N as t — oo (provided that there are

initially some infected individuals so 1(0) > 0).

o If B,v > 0, then every individual will eventually get infected and re-
cover, so S(t),I(t) — 0 and R(t) - N as t — oc.



5. Consider a scalar autonomous ODE z; = f(x) where f : R — R is
continuously differentiable.

(a) Prove that a hyperbolic equilibrium z € R is asymptotically stable if
f'(z) < 0 and unstable if f'(z) > 0. HiNT. Use a Lyapunov function
V(z) = (z—17)?/2.

(b) In each of the following cases, give an example of such an ODE with a
non-hyperbolic equilibrium that is: (i) asymptotically stable; (ii) unstable;
(iii) stable but not asymptotically stable.

Solution

e (a) We have
d N s =
SV()= (e — )i = (2~ 7) f(2).

Since f(z) = 0 and f is differentiable at Z, the mean value theorem
implies that there exists £ = £(x) between = and z such that

fla) = () = f(z) = () (x = 7),

SO
d

SV(@) = 2OV ()

e Since f'(z) # 0 and f’ is continuous at Z, there exists § > 0 such that
_ Lo
(@) = f(@)] < 51/ (@)
for |z — z| < 0.

e First, suppose that f'(Z) = —a < 0, which implies that f'(z) < —a/2
for |x — x| < . We claim that if |x(0) — z| < 0, then |z(t) —z| < ¢
for all ¢ > 0. If not, there exists some earliest time ty, > 0 after which
|z(t) — | exceeds §. Then |x(ty) — Z| = § and there is a sequence of
times t,, > ty such that |z(t,) — Z| > 0 and ¢, | ty as n — oo. But
V(z(t)), and therefore |z(t) — Z|, is strictly decreasing at ¢ = to, since

d 1

—V (x(t < —-ad* <0,

GV )| <
so there exists n > 0 such that |z(t) — | < d for ty < t < to+n, which
is a contradiction.



e It follows that if |z(0) — z| < 4, then f'(£) < —a/2 and

d
a\/(x) < —aV(z)

for all t > 0. Gronwall’s inequality implies that
V(z(t)) < V(2(0))e ™™

for all £ > 0, which shows that z is asymptotically stable. Explicitly,
given € > 0, we have |z(t) — Z| < € for all £ > 0 whenever |z(0) — z| <
n where n = min(d,€), so Z is stable, and z(t) — = as t — oo if
|z(0) — z| < 9, since V(z(t)) — 0 as t — oo, so T is asymptotically
stable.

e On the other hand, if f'(Z) = a > 0, then a similar argument backward
in time (¢t — —t) shows that if |2(0) — z| < 0, then
V (2(t) < V((0))e"
for all ¢ < 0 provided that |z(0) — Z| < §. Applying this result to the
solution x(t +7'), where T' > 0 is an arbitrary time shift, we have
V(zt+T)) <V(x(T))e",
for all t <0, provided that |z(T) — Z| < ¢, and setting t = —T, we get
V (2(0)) e < V(2(T)).
This result shows that |z(t) — z| > §/2 for sufficiently large ¢ > 0
however close to & we choose x(0) # Z, meaning that Z is not stable.
e (b) Examples with a non-hyperbolic equilibrium at z = 0 are:
(i) x=—2° (asymptotically stable);
(i) x, =2* (unstable);
(i) ;=0 (stable but not asymptotically stable).
A more interesting example for (iii) is z; = f(x) where
r3sin(1/z) if z # 0,
flay = et
0 itz =0.
This has infinitely many hyperbolic equilibria at © = 1/(nw), for n €
Z, which alternate between asymptotically stable and unstable and

accumulate at the stable but not asymptotically stable non-hyperbolic
equilibrium x = 0.



