PROBLEM SET 4 Math 207A, Fall 2014

1. Sketch the bifurcation diagram and phase lines for the ODE

$$x_t = \mu x + x^3 - x^5,$$

and classify the bifurcations that occur. What would happen if the parameter μ is slowly increased from $-\infty$ to ∞ , and then decreased back to $-\infty$? Where will the symmetry of the system under reflections $x \mapsto -x$ play a role?

2. Sketch the bifurcation diagrams and phase lines for x versus μ

$$x_t = a + \mu x - x^3$$

for: (i) a < 0; (ii) a = 0; (iii) a > 0. Classify the bifurcations that occur.

3. Sketch the bifurcation diagram and phase circles for the periodic ODE

$$x_t = -\mu + 2 + \cos 2x - 3\cos x,$$

and classify the bifurcations that occur. (See Exercise 2.14 in the text for more help.)

4. The following PDE for u(x, t), called Burgers equation, is a simply model of the Navier-Stokes equations for viscous fluids

$$u_t + uu_x = u_{xx}$$

(a) Look for traveling wave solutions of the form u = f(x - ct), and derive a first-order ODE for f.

(b) Show that the PDE has traveling wave solutions with $u \to u_-$ as $x \to -\infty$ and $u \to u_+$ as $x \to \infty$, where u_{\pm} are constants, if $u_- \ge u_+$ and the wavevelocity c is given by

$$c = \frac{u_+ + u_-}{2}.$$

Solve for the traveling wave solution in that case.