
Problem set 4

Math 207A, Fall 2014

1. Sketch the bifurcation diagram and phase lines for the ODE

xt = µx+ x3 − x5,

and classify the bifurcations that occur. What would happen if the parameter
µ is slowly increased from−∞ to∞, and then decreased back to−∞? Where
will the symmetry of the system under reflections x 7→ −x play a role?

Solution

• The equilibria satisfy

x
(

µ+ x2 − x4
)

= 0,

so x = 0 or

x2 =
1±

√
1 + 4µ

2
.

These roots are both complex if µ < −1/4, both real and positive if
−1/4 < µ < 0, and one is real and positive the other real an negative
of µ > 0. It follows that there are no equilibra in addition to x = 0
if µ < −1/4, four additional equilibria if −1/4 < µ < 0, and two
additional equilibria if µ > 0.

• A subcritical pitchfork bifurcation occurs at (x, µ) = (0, 0), and super-
critical saddle-node bifurcations occur at (x, µ) = ±(1/2,−1/4).

• We have fx(0, µ) = µ, so the equilibrium x = 0 is asymptotically stable
for µ < 0 and unstable if µ > 0. Similarly, one finds that the branches

x = ±
√

1 +
√
1 + 4µ

2

are asymptotically stable if µ > −1/4, and the branches

x = ±
√

1−
√
1 + 4µ

2

are unstable if −1/4 < µ < 0.
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• For µ < −1/4, the equilibrium x = 0 is globally asymptotically stable.
The system will remain in this state as µ is increased quasistatically to
0. As µ is increased through 0, the system jumps to one of the stable
equilibrium branches near x = ±1. Which one of these symmetric
states occurs is not determined by the system, but will depend on
external asymmetries, e.g., in the initial data, noise, or imperfections
in the system. As µ is increased further, the solution remains on the
same stable equilibrium branch.

• As µ is decreased quasistatically from large values, the solution retraces
the previous stable equilibrium branch until µ = −1/4 (hysteresis) and
then jumps to x = 0 for µ < −1/4. The bifurcation diagram is below.
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2. Sketch the bifurcation diagrams and phase lines for x versus µ

xt = a+ µx− x3

for: (i) a < 0; (ii) a = 0; (iii) a > 0. Classify the bifurcations that occur.

Solution

• The equilibria satisfy x3 − µx− a = 0. The discriminant of this cubic
is ∆ = 4µ3 − 27a2. The cubic has three real roots if ∆ > 0 and one
real root if ∆ < 0. (To see this, consider the values of the cubic at the
points 3x2 − µ = 0 where its attains a local maximum and minimum
for µ > 0.)

• If a = 0, then we have a supercritical pitchfork bifurcation at (x, µ) =
(0, 0): there is one asymptotically stable solution x = 0 for µ < 0; and
three solutions x = 0 (unstable), x = ±√

µ (asymptotically stable) for
µ > 0.

• If a 6= 0 then there is one solution if µ < µ0 and three solutions if
µ > µ0 where

µ0 = 3
(a

2

)2/3

.

A supercritical saddle-node bifurcation occurs that the point (x0, µ0),
where

x0 = −
(a

2

)1/3

and f(x, µ) = a+ µx− x3 satisfies

f(x0, µ0) = a+ µ0x0 − x3

0 = 0,

∂f

∂x
(x0, µ0) = µ0 − 3x2

0 = 0,

∂f

∂µ
(x0, µ0) = x0 6= 0,

∂2f

∂x2
(x0, µ0) = −6x0 6= 0.

Remark. The constant term a 6= 0 breaks the reflectional symmetry x 7→ −x
of the pitchfork bifurcation, which splits into a single asymptotically stable
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branch with no bifurcations, and two branches (one asymptotically stable, the
other unstable) that originate at a supercritical saddle-node bifurcation. Here
are the bifurcation diagrams for a = −0.1, a = 0, and a = 0.1, respectively:
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3. Sketch the bifurcation diagram and phase circles for the periodic ODE

xt = −µ+ 2 + cos 2x− 3 cosx,

and classify the bifurcations that occur. (See Exercise 2.14 in the text for
more help.)

Solution

• Graphically, one can read off the equilibria from the intersections of
the horizontal line y = µ − 2 with the graph y = cos 2x − 3 cosx (see
the figure for the graph y = cos 2x− 3 cosx ).
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• Writing f(x, µ) = −µ+2+cos 2x−3 cosx, the possible bifurcations of
equilibria occur when f(x, µ) = 0 and fx(x, µ) = 0, which implies that

µ = 2 + cos 2x− 3 cosx, 2 sin 2x = 3 sinx.

Since sin 2x = 2 sin x cosx, either sin x = 0, so x = 0, π, or cos x = 3/4.
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• There are no equilibria for µ < −1/8 or µ > 6.

• If x = cos−1(3/4), or x ≈ 0.7227, 5.5605, then µ = −1/8 and two
supercritical-saddle-node bifurcations occur at this value of µ. There
are four equilibria for −1/8 < µ < 0. By looking at the sign of f(x, µ),
one can see that they are stable, unstable, stable, and unstable in order
of increasing 0 < x < 2π.

• At (x, µ) = (0, 0) = (2π, 0) there is a subcritical saddle-node bifurca-
tion, and two of these equilibria annihilate each other. There are two
equilibria for 0 < µ < 6. Finally at (x, µ) = (π, 6), there is a second
subcritical saddle-node bifurcation, and the remaining two equilibria
annihilate each other.
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4. The following PDE for u(x, t), called Burgers equation, is a simply model
of the Navier-Stokes equations for viscous fluids

ut + uux = uxx

(a) Look for traveling wave solutions of the form u = f(x− ct), and derive a
first-order ODE for f .

(b) Show that the PDE has traveling wave solutions with u → u− as x → −∞
and u → u+ as x → ∞, where u± are constants, if u− ≥ u+ and the wave-
velocity c is given by

c =
u+ + u−

2
.

Solve for the traveling wave solution in that case.

Solution

• (a) Using u = f(x− ct) in the PDE, we get that

−cf ′ + ff ′ = f ′′.

We can integrate this ODE once to get

f ′ =
1

2
f 2 − cf + b,

where b is a constant of integration.

• (b) This ODE has two equilibria f = u+ < u−, say, if

1

2
f 2 − cf + b =

1

2
(f − u−) (f − u+) ,

which requires that c = (u+ + u−)/2. The ODE has a decreasing
solution f(x) such that f(x) → u− as x → −∞ and f(x) → u+ as
x → ∞, which is the required traveling wave solution. (Draw the
phase line.)

• Solving the PDE by separating variables and using partial fractions to
compute the f -integral, we find that the correspsonding traveling wave
solution for u+ < u < u− can be written as

u(x, t) =
1

2
(u− + u+)−

1

2
(u− − u+) tanh

[

1

4
(u− − u+)(x− ct)

]

,
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where

tanh z =
ez − e−z

ez + e−z
.

Remark. Burgers equation provides a good approximation for unidirec-
tional, small-amplitude nonlinear sound waves in compressible fluid mechan-
ics. This traveling wave solution describes the viscous profile of a weak planar
shock wave. In this approximation, the shock speed c = (u+ + u−)/2 is the
average of the states on either side of the shock, and the fact that u− > u+

corresponds to the condition that the entropy of the fluid increases across a
shock.
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