
Problem set 6: Solutions

Math 207A, Fall 2014

1. Sketch phase planes of the following 2× 2 linear systems:

(a)

(

x
y

)

t

=

(

0 4
−9 0

)(

x
y

)

;

(b)

(

x
y

)

t

=

(

0 4
9 0

)(

x
y

)

;

(c)

(

x
y

)

t

=

(

2 1
0 2

)(

x
y

)

;

(d)

(

x
y

)

t

=

(

2 −1
−4 2

)(

x
y

)

;

(e)

(

x
y

)

t

=

(

0 2
−5 2

)(

x
y

)

;

(f)

(

x
y

)

t

=

(

0 2
−1 −3

)(

x
y

)

.

In each case, classify the equilibrium (x, y) = (0, 0) (as a saddle point, node
etc.), determine its stability, and say if it is hyperbolic or non-hyperbolic.

Solution

• Phase planes are shown in Figure 1. They are drawn using pplane8.m,
which is available at http://math.rice.edu/~dfield/.

• (a) The eigenvalues and eigenvectors are

λ = ±6i, ~r =

(

2
±3i

)

.

The origin is a center (stable but not asymptotically stable, and non-
hyperbolic).

• (b) The eigenvalues and eigenvectors are

λ = ±6, ~r =

(

2
±3

)

.

The origin is a saddle point (unstable and hyperbolic).



• (c) The eigenvalues and eigenvectors are

λ = 2, ~r =

(

1
0

)

.

The eigenvalue λ = 2 has algebraic multiplicity 2 and geometric mul-
tiplicity 1, and the matrix is not diagonalizable. The general solution
is

(

x(t)
y(t)

)

= c1e
2t

(

1
0

)

+ c2e
2t

[(

0
1

)

+ t

(

1
0

)]

.

The origin is an unstable node (hyperbolic).

• (d) The eigenvalues and eigenvectors are

λ1 = 0, λ2 = 4, ~r1 =

(

1
2

)

, ~r2 =

(

1
−2

)

.

The matrix is singular, and there is a line of equilibria at

(x, y) = (c, 2c).

The origin is not an isolated equilibrium (unstable and non-hyperbolic).

• (e) The eigenvalues and eigenvectors are

λ = 1± 3i, ~r =

(

2
1± 3i

)

.

The origin is an unstable spiral point (hyperbolic).

• (f) The eigenvalues and eigenvectors are

λ1 = −2, λ2 = −1, ~r1 =

(

1
−1

)

, ~r2 =

(

2
−1

)

.

The origin is a stable node (asymptotically stable and hyperbolic).



x ’ = A x + B y
y ’ = C x + D y
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x ’ = A x + B y
y ’ = C x + D y

B = 2
D = 2

A = 0
C = − 5
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(e)

x ’ = A x + B y
y ’ = C x + D y

B = − 1
D = 2

A = 2
C = − 4
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(d)

x ’ = A x + B y
y ’ = C x + D y

B = 1
D = 2

A = 2
C = 0
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(c)

x ’ = A x + B y
y ’ = C x + D y

B = 4
D = 0

A = 0
C = 9
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(b)

x ’ = A x + B y
y ’ = C x + D y

B = 4
D = 0

A = 0
C = − 9
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Figure 1: Phase planes for 1(a)–1(f).



2. Two n× n linear systems ~xt = A~x, ~yt = B~y are said to be differentiably
equivalent if there is a diffeomorphism (i.e., a differentiable map with dif-
ferentiable inverse) h : Rn → R

n such that ~y(t) = h(~x(t)) is a solution of
~yt = B~y if and only if ~x(t) is a solution of ~xt = A~x. Show that if ~xt = A~x and
~yt = B~y are differentiably equivalent, then A and B have the same eigen-
values. Is differentiable equivalence a useful way to classify the qualitative
behavior of linear systems? Explain your answer.

Solution

• Consider, more generally, two n× n nonlinear systems

xt = f(x), yt = g(y).

Suppose that the change of variable y = h(x) maps the first system
into the second. (We don’t indicate vectors explicitly.)

• Using the chain rule and the x-equation, we get that

yt = Dh(x) · xt = Dh(x) · f(x),

where the linear mapDh(x) : Rn → R
n is the derivative of h : Rn → R

n

at x. (The matrix of Dh is the Jacobian matrix of h.) If ODEs have
the same solutions, then they have the same vector fields, so it follows
that

g (h(x)) = Dh(x) · f(x). (1)

• Now suppose that x̄ is an equilbrium solution for the x-equation, mean-
ing that f(x̄) = 0, and let ȳ = h(x̄) be the corresponding equilbrium
of the y-equation. The linearizations of the x, y-equations at x = x̄,
y = ȳ are:

xt = Ax, A = Df(x̄); yt = By, B = Dg(ȳ).

• Differentiating (1) with respect to x and using the chain rule, we get
that

Dg (h(x)) ·Dh(x) = D2h(x) · f(x) +Dh(x) ·Df(x); (2)

or, in component notation with yi = hi(xj),

gi =
∂yi
∂xj

fj ,
∂gi
∂yj

∂yj
∂xk

=
∂2yi

∂xj∂xk

fj +
∂yi
∂xj

∂fj
∂xk

,

where we use the summation convention over repeated j-indices.



• Setting x = x̄ in (2) and using the fact that f(x̄) = 0, we get that

B ·Dh(x̄) = Dh(x̄) · A.

Since h is a diffeomorphism, Dh(x̄) is nonsingular, and

B = Dh(x̄) · A ·Dh(x̄)−1.

This means that the matrices of A, B are similar; in particular, they
have the same eigenvalues.

• Differentiable equivalence is too fine a notion to provide a useful clas-
sification of the qualitative dynamics of ODEs. For example, we would
like to regard any two planar linear systems for which the origin is a
saddle point as equivalent. However, if one equilibrium has eigenvalues
λ = −1, 1 and another has eigenvalues λ = −1.001, 1, then the corre-
sponding systems are not differentiably equivalent. This fact explains
why we use the weaker notion of topological equivalence to classify
dynamical systems, even though it is harder to work with.



3. Consider the following 2× 2 system of ODEs

xt = x− y, yt = x+ y − 2xy. (3)

(a) Find the equilibria.

(b) Linearize the system around the equilibria and classify them.

(c) Sketch the phase plane of the system.

(d) Discuss the asymptotic behavior of solutions as t → ∞. Indicate different
regions of the phase plane that correspond to different types of asymptotic
behavior.

Solution

• (a) The equilibria satisfy

x− y = 0, x+ y − 2xy = 0,

which implies that x = y and x− x2 = 0, so (x, y) = (0, 0) or (x, y) =
(1, 1).

• (b) The Jacobian matrix of the system is
(

1 −1
1− 2y 1− 2x

)

.

• The linearization at (0, 0) is
(

x
y

)

t

=

(

1 −1
1 1

)(

x
y

)

.

The eigenvalues are λ = 1± i, so (0, 0) is an unstable spiral point.

• The linearization at (1, 1) is
(

x
y

)

t

=

(

1 −1
−1 −1

)(

x
y

)

.

The eigenvalues are λ = ±
√
2, so (1, 1) is a saddle point.

• (c) The phase plane is shown below. The stable and unstable manifolds
of the saddle point are shown in green, and the nullclines in orange
(yt = 0) and magenta (xt = 0).



• (d) The phase plane is divided into two parts by a curve that con-
sists of the stable manifold of the saddle point — which includes the
heteroclinic orbit from the spiral (0, 0) to the saddle (1, 1) — and the
trajectory from the spiral (0, 0) such that x(t) → −∞, y(t) → 1/2 as
t → +∞.

• Trajectories below this curve (the region actually winds around the
spiral point near (0, 0)) approach the right part of the unstable manifold
of the saddle point, and have x(t) → +∞, y(t) → 1/2 as t → +∞;
while points above this curve approach the left part of the unstable
manifold of the saddle point, and have x(t) → −∞, y(t) → +∞ as
t → +∞.

x ’ = x − y        
y ’ = x + y − 2 x y
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