METHODS OF APPLIED MATHEMATICS
Math 207A, Fall 2018
Final: Solutions

1 [10pts] Suppose that the vector field in a planar dynamical system
xt:f(xay)a yt:g('x’y)

satisfies 9 9
a—£+a—§ <0 forall (z,y) € R2. (1)

Show that the system cannot have any closed periodic orbits. HINT. Recall
Green’s theorem: If  C R? is a subset of the plane whose boundary 02 is a
smooth, simple closed curve and P, @ : R? — R are smooth functions, then

/ Pdy — Qdx = / (G_P + @) dxdy.
o0 o\ 0z dy

e Suppose, for contradiction, that I' is a closed orbit. Then I' is a smooth
simple closed curve (assuming, as usual, that f, g are smooth functions)
with interior 2. We parametrize I" by time 0 < ¢ < T, so that (with
a slight abuse of notation) it is given by = = z(t), y = y(t) where
(xz(t),y(t)) are solutions of the differential equation. It follows that

[ty =gy = [ (Feg) - () dt = / (o gfdt=0.

Solution

e On the other hand, Green’s theorem and (1) imply that

B af 9g
/F(fdy—gdx)—/g(a—x—ka—y> dzdy < 0,

which shows that periodic orbits are impossible.

Remark. This result is called Bendixson’s criterion. It would apply equally
well if the divergence of f = (f,g) was strictly positive. More generally,
Dulac’s criterion states that the system x = f(x) on R? cannot have any
closed orbits if there exists a strictly positive function h such that V - (hf)
has a definite sign. The divergence of f is related to how the flow changes
areas (or volumes) in phase space (the flow decreases, increases, or preserves
volumes if V - f is negative, positive, or zero, respectively).
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2 [20pts| Consider the planar system
= —1 + 1>, y, = —2a% + 2y

(a) Determine the equilibria, find an equation for the trajectories of the
system, and sketch the phase plane.

(b) Linearize the system at (z,y) = (0,0) and determine the stable and
center subspaces. What are the stable and center manifolds of (0,0)?
Solution

e (a) Every point on the parabola x = y* is an equilibrium. For z # y?,
we have on trajectories that

dy — —22% + 2zy?
— = —" =2z.
dx —x + 12

Integration of this ODE shows that the trajectories satisfy
y=a2>+C

for some constant C'. The solution for z(t) is increasing when z < y?
and decreasing when x > y?. The phase plane is shown below. In
particular, there is a heteroclinic orbit y = z? with 0 < z < 1 that
connects (1,1) to (0,0).

e (b) The linearization at (0,0) is

() =(3 ()

The stable subspace is spanned by the eigenvector (1,0)7 with eigen-
value —1, and the center subspace is spanned by the eigenvector (0, 1)
with eigenvalue 0.

e The local stable and center manifolds are the curves y = 22 and z = y?
in a small neighborhood of the origin. The global stable manifold,
obtained by mapping the local stable manifold backward in time, is

W*(0,0) = {(z,y) e R* 1y =2” and —co <z < 1}.
We could also use the whole of the other parabola as a center manifold,

We(0,0) = {(z,y) eR*: 2 =y* and —co <y < —00} .



3 [20pts] Consider the following flow on the circle
0y =1— psind,

where 6(t) € S' = R/27Z is an angle and p > 0 is a parameter.

(a) Find the equilibria and determine their stability as a function of . Sketch
a bifurcation diagram. What is the bifurcation point (6., )7 What type of
bifurcation occurs?

(b) Sketch the flows on the phase circle for 0 < pu < pis, it = pis, and p > fu,.

Solution

e (a) The equilibria satisfy sinf = 1/u. For 0 < p < 1, there are no
equilibria; for g = 1, there is a single equlibrium at § = 7/2; and for
p > 1, there are two equilibria at 0 = 7/2 4+ ¢(u), where 0 < ¢ < 7/2
satisfies cos ¢ = 1/pu.

o If f(O,11) =1— psind, then fp(f,n) = —pcosb, so
™ .
fo (5 + gb) = Fpsin ¢.

It follows that f, < 0 at § = w/2 — ¢, so the equilibrium is asymp-
totically stable, and and fy > 0 at § = 7/2 + ¢, so the equilibrium is
unstable. (Alternatively, we can look at the sign of f to determine the
direction of the flow.)

e A saddle-node bifurcation occurs at (6, i) = (7/2,1). The bifurcation
diagram is shown below.

e (b) Phase flows are shown below.



4 [20pts| The Ricker model for a population z,, at generation n =0,1,2,...
is
Tpt1 = Tnexp [0 (1 — 2y)],
where —oo0 < i < 00 is a growth rate parameter.
(a) Find the fixed points and determine their stability.

(b) Sketch a bifurcation diagram for the fixed points and discuss what bifur-
cations occur at the fixed points as p increases from —oo to co.

Solution

e (a) The fixed points satisfy x = zexp [u (1 — x)], so either z =0 or

exp [u(l —2)] =1
This equation implies that pu(1 — ) = 0, so either x = 1 or g = 0.
Thus, for p # 0 there are two fixed points z = 0, 1, and for u = 0 every
point is a fixed point.

o If f(x,n) = xexp|u (1l —x)], then

fo(,p) = exppu(l —2)] — prexp [u(l —z)].
It follows that f,.(0, u) = e, so z = 0 is asymptotically stable for u < 0,
when 0 < f,(0,u) < 1, and unstable for x> 0, when f,(0, ) > 1.
Similarly, f,(1,4) =1—pu, so x = 1 is unstable for u < 0 or u > 2, and
asymptotically stable for 0 < p < 2.

e At p = 0, the fixed points are nonhyperbolic, with f.(z,0) = 1, so
linearized stability does not tell us their stability. However, since ev-
ery point is a fixed point, all of the fixed points are stable but not
asymptotically stable.

e (b) At (z,u) = (0,0) and (x, ) = (1,0) there is a kind of degenerate
or critical transcritical bifurcation, in which the fixed-point branches
x = 0, = 1 cross the branch at 4 = 0. When this happens, the
branch z = 0 loses stability and the branch x = 1 gains stability. At
(x, 1) = (1,2), the branch x = 1 loses stability as the corresponding
eigenvalue decreases through —1, so we expect a period-doubling bifur-
cation to occur. A more detailed analysis of the nonlinear terms, using
a Taylor expansion of f(z, 1) around (x, ) = (1,2), shows that there is
a super-critical period-doubling bifurcation. The bifurcation diagram
is sketched below.
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