Methods of Applied Mathematics
 Math 207A, Fall 2018
 Final: Solutions

$\mathbf{1}$ [10pts] Suppose that the vector field in a planar dynamical system

$$
x_{t}=f(x, y), \quad y_{t}=g(x, y)
$$

satisfies

$$
\begin{equation*}
\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}<0 \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

Show that the system cannot have any closed periodic orbits. Hint. Recall Green's theorem: If $\Omega \subset \mathbb{R}^{2}$ is a subset of the plane whose boundary $\partial \Omega$ is a smooth, simple closed curve and $P, Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are smooth functions, then

$$
\int_{\partial \Omega} P d y-Q d x=\int_{\Omega}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d x d y
$$

Solution

- Suppose, for contradiction, that Γ is a closed orbit. Then Γ is a smooth simple closed curve (assuming, as usual, that f, g are smooth functions) with interior Ω. We parametrize Γ by time $0 \leq t \leq T$, so that (with a slight abuse of notation) it is given by $x=x(t), y=y(t)$ where $(x(t), y(t))$ are solutions of the differential equation. It follows that

$$
\int_{\Gamma}(f d y-g d x)=\int_{0}^{T}(f, g) \cdot\left(y_{t},-x_{t}\right) d t=\int_{0}^{T}(f g-g f) d t=0 .
$$

- On the other hand, Green's theorem and (1) imply that

$$
\int_{\Gamma}(f d y-g d x)=\int_{\Omega}\left(\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}\right) d x d y<0
$$

which shows that periodic orbits are impossible.
Remark. This result is called Bendixson's criterion. It would apply equally well if the divergence of $\mathbf{f}=(f, g)$ was strictly positive. More generally, Dulac's criterion states that the system $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ on \mathbb{R}^{2} cannot have any closed orbits if there exists a strictly positive function h such that $\nabla \cdot(h \mathbf{f})$ has a definite sign. The divergence of \mathbf{f} is related to how the flow changes areas (or volumes) in phase space (the flow decreases, increases, or preserves volumes if $\nabla \cdot \mathbf{f}$ is negative, positive, or zero, respectively).

2 [20pts] Consider the planar system

$$
x_{t}=-x+y^{2}, \quad y_{t}=-2 x^{2}+2 x y^{2} .
$$

(a) Determine the equilibria, find an equation for the trajectories of the system, and sketch the phase plane.
(b) Linearize the system at $(x, y)=(0,0)$ and determine the stable and center subspaces. What are the stable and center manifolds of $(0,0)$?

Solution

- (a) Every point on the parabola $x=y^{2}$ is an equilibrium. For $x \neq y^{2}$, we have on trajectories that

$$
\frac{d y}{d x}=\frac{-2 x^{2}+2 x y^{2}}{-x+y^{2}}=2 x
$$

Integration of this ODE shows that the trajectories satisfy

$$
y=x^{2}+C
$$

for some constant C. The solution for $x(t)$ is increasing when $x<y^{2}$ and decreasing when $x>y^{2}$. The phase plane is shown below. In particular, there is a heteroclinic orbit $y=x^{2}$ with $0<x<1$ that connects $(1,1)$ to $(0,0)$.

- (b) The linearization at $(0,0)$ is

$$
\binom{x}{y}_{t}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right)\binom{x}{y} .
$$

The stable subspace is spanned by the eigenvector $(1,0)^{T}$ with eigenvalue -1 , and the center subspace is spanned by the eigenvector $(0,1)^{T}$ with eigenvalue 0 .

- The local stable and center manifolds are the curves $y=x^{2}$ and $x=y^{2}$ in a small neighborhood of the origin. The global stable manifold, obtained by mapping the local stable manifold backward in time, is

$$
W^{s}(0,0)=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2} \text { and }-\infty<x<1\right\} .
$$

We could also use the whole of the other parabola as a center manifold,

$$
W^{c}(0,0)=\left\{(x, y) \in \mathbb{R}^{2}: x=y^{2} \text { and }-\infty<y<-\infty\right\} .
$$

3 [20pts] Consider the following flow on the circle

$$
\theta_{t}=1-\mu \sin \theta,
$$

where $\theta(t) \in S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ is an angle and $\mu>0$ is a parameter.
(a) Find the equilibria and determine their stability as a function of μ. Sketch a bifurcation diagram. What is the bifurcation point $\left(\theta_{*}, \mu_{*}\right)$? What type of bifurcation occurs?
(b) Sketch the flows on the phase circle for $0<\mu<\mu_{*}, \mu=\mu_{*}$, and $\mu>\mu_{*}$.

Solution

- (a) The equilibria satisfy $\sin \theta=1 / \mu$. For $0<\mu<1$, there are no equilibria; for $\mu=1$, there is a single equlibrium at $\theta=\pi / 2$; and for $\mu>1$, there are two equilibria at $\theta=\pi / 2 \pm \phi(\mu)$, where $0<\phi<\pi / 2$ satisfies $\cos \phi=1 / \mu$.
- If $f(\theta, \mu)=1-\mu \sin \theta$, then $f_{\theta}(\theta, \mu)=-\mu \cos \theta$, so

$$
f_{\theta}\left(\frac{\pi}{2} \pm \phi\right)= \pm \mu \sin \phi
$$

It follows that $f_{\theta}<0$ at $\theta=\pi / 2-\phi$, so the equilibrium is asymptotically stable, and and $f_{\theta}>0$ at $\theta=\pi / 2+\phi$, so the equilibrium is unstable. (Alternatively, we can look at the sign of f to determine the direction of the flow.)

- A saddle-node bifurcation occurs at $(\theta, \mu)=(\pi / 2,1)$. The bifurcation diagram is shown below.
- (b) Phase flows are shown below.

4 [20pts] The Ricker model for a population x_{n} at generation $n=0,1,2, \ldots$ is

$$
x_{n+1}=x_{n} \exp \left[\mu\left(1-x_{n}\right)\right],
$$

where $-\infty<\mu<\infty$ is a growth rate parameter.
(a) Find the fixed points and determine their stability.
(b) Sketch a bifurcation diagram for the fixed points and discuss what bifurcations occur at the fixed points as μ increases from $-\infty$ to ∞.

Solution

- (a) The fixed points satisfy $x=x \exp [\mu(1-x)]$, so either $x=0$ or

$$
\exp [\mu(1-x)]=1
$$

This equation implies that $\mu(1-x)=0$, so either $x=1$ or $\mu=0$. Thus, for $\mu \neq 0$ there are two fixed points $x=0,1$, and for $\mu=0$ every point is a fixed point.

- If $f(x, \mu)=x \exp [\mu(1-x)]$, then

$$
f_{x}(x, \mu)=\exp [\mu(1-x)]-\mu x \exp [\mu(1-x)] .
$$

It follows that $f_{x}(0, \mu)=e^{\mu}$, so $x=0$ is asymptotically stable for $\mu<0$, when $0<f_{x}(0, \mu)<1$, and unstable for $\mu>0$, when $f_{x}(0, \mu)>1$. Similarly, $f_{x}(1, \mu)=1-\mu$, so $x=1$ is unstable for $\mu<0$ or $\mu>2$, and asymptotically stable for $0<\mu<2$.

- At $\mu=0$, the fixed points are nonhyperbolic, with $f_{x}(x, 0)=1$, so linearized stability does not tell us their stability. However, since every point is a fixed point, all of the fixed points are stable but not asymptotically stable.
- (b) At $(x, \mu)=(0,0)$ and $(x, \mu)=(1,0)$ there is a kind of degenerate or critical transcritical bifurcation, in which the fixed-point branches $x=0, x=1$ cross the branch at $\mu=0$. When this happens, the branch $x=0$ loses stability and the branch $x=1$ gains stability. At $(x, \mu)=(1,2)$, the branch $x=1$ loses stability as the corresponding eigenvalue decreases through -1 , so we expect a period-doubling bifurcation to occur. A more detailed analysis of the nonlinear terms, using a Taylor expansion of $f(x, \mu)$ around $(x, \mu)=(1,2)$, shows that there is a super-critical period-doubling bifurcation. The bifurcation diagram is sketched below.

