
Methods of Applied Mathematics
Math 207A, Fall 2018

Final: Solutions

1 [10pts] Suppose that the vector field in a planar dynamical system

xt = f(x, y), yt = g(x, y)

satisfies
∂f

∂x
+
∂g

∂y
< 0 for all (x, y) ∈ R2. (1)

Show that the system cannot have any closed periodic orbits. Hint. Recall
Green’s theorem: If Ω ⊂ R2 is a subset of the plane whose boundary ∂Ω is a
smooth, simple closed curve and P,Q : R2 → R are smooth functions, then∫

∂Ω

Pdy −Qdx =

∫
Ω

(
∂P

∂x
+
∂Q

∂y

)
dxdy.

Solution

• Suppose, for contradiction, that Γ is a closed orbit. Then Γ is a smooth
simple closed curve (assuming, as usual, that f , g are smooth functions)
with interior Ω. We parametrize Γ by time 0 ≤ t ≤ T , so that (with
a slight abuse of notation) it is given by x = x(t), y = y(t) where
(x(t), y(t)) are solutions of the differential equation. It follows that∫

Γ

(fdy − gdx) =

∫ T

0

(f, g) · (yt,−xt) dt =

∫ T

0

(fg − gf) dt = 0.

• On the other hand, Green’s theorem and (1) imply that∫
Γ

(fdy − gdx) =

∫
Ω

(
∂f

∂x
+
∂g

∂y

)
dxdy < 0,

which shows that periodic orbits are impossible.

Remark. This result is called Bendixson’s criterion. It would apply equally
well if the divergence of f = (f, g) was strictly positive. More generally,
Dulac’s criterion states that the system ẋ = f(x) on R2 cannot have any
closed orbits if there exists a strictly positive function h such that ∇ · (hf)
has a definite sign. The divergence of f is related to how the flow changes
areas (or volumes) in phase space (the flow decreases, increases, or preserves
volumes if ∇ · f is negative, positive, or zero, respectively).
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2 [20pts] Consider the planar system

xt = −x+ y2, yt = −2x2 + 2xy2.

(a) Determine the equilibria, find an equation for the trajectories of the
system, and sketch the phase plane.

(b) Linearize the system at (x, y) = (0, 0) and determine the stable and
center subspaces. What are the stable and center manifolds of (0, 0)?

Solution

• (a) Every point on the parabola x = y2 is an equilibrium. For x 6= y2,
we have on trajectories that

dy

dx
=
−2x2 + 2xy2

−x+ y2
= 2x.

Integration of this ODE shows that the trajectories satisfy

y = x2 + C

for some constant C. The solution for x(t) is increasing when x < y2

and decreasing when x > y2. The phase plane is shown below. In
particular, there is a heteroclinic orbit y = x2 with 0 < x < 1 that
connects (1, 1) to (0, 0).

• (b) The linearization at (0, 0) is(
x
y

)
t

=

(
−1 0
0 0

)(
x
y

)
.

The stable subspace is spanned by the eigenvector (1, 0)T with eigen-
value −1, and the center subspace is spanned by the eigenvector (0, 1)T

with eigenvalue 0.

• The local stable and center manifolds are the curves y = x2 and x = y2

in a small neighborhood of the origin. The global stable manifold,
obtained by mapping the local stable manifold backward in time, is

W s(0, 0) =
{

(x, y) ∈ R2 : y = x2 and −∞ < x < 1
}
.

We could also use the whole of the other parabola as a center manifold,

W c(0, 0) =
{

(x, y) ∈ R2 : x = y2 and −∞ < y < −∞
}
.
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3 [20pts] Consider the following flow on the circle

θt = 1− µ sin θ,

where θ(t) ∈ S1 = R/2πZ is an angle and µ > 0 is a parameter.

(a) Find the equilibria and determine their stability as a function of µ. Sketch
a bifurcation diagram. What is the bifurcation point (θ∗, µ∗)? What type of
bifurcation occurs?

(b) Sketch the flows on the phase circle for 0 < µ < µ∗, µ = µ∗, and µ > µ∗.

Solution

• (a) The equilibria satisfy sin θ = 1/µ. For 0 < µ < 1, there are no
equilibria; for µ = 1, there is a single equlibrium at θ = π/2; and for
µ > 1, there are two equilibria at θ = π/2± φ(µ), where 0 < φ < π/2
satisfies cosφ = 1/µ.

• If f(θ, µ) = 1− µ sin θ, then fθ(θ, µ) = −µ cos θ, so

fθ

(π
2
± φ
)

= ±µ sinφ.

It follows that fθ < 0 at θ = π/2 − φ, so the equilibrium is asymp-
totically stable, and and fθ > 0 at θ = π/2 + φ, so the equilibrium is
unstable. (Alternatively, we can look at the sign of f to determine the
direction of the flow.)

• A saddle-node bifurcation occurs at (θ, µ) = (π/2, 1). The bifurcation
diagram is shown below.

• (b) Phase flows are shown below.
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4 [20pts] The Ricker model for a population xn at generation n = 0, 1, 2, . . .
is

xn+1 = xn exp [µ (1− xn)] ,

where −∞ < µ <∞ is a growth rate parameter.

(a) Find the fixed points and determine their stability.

(b) Sketch a bifurcation diagram for the fixed points and discuss what bifur-
cations occur at the fixed points as µ increases from −∞ to ∞.

Solution

• (a) The fixed points satisfy x = x exp [µ (1− x)], so either x = 0 or

exp [µ (1− x)] = 1.

This equation implies that µ(1 − x) = 0, so either x = 1 or µ = 0.
Thus, for µ 6= 0 there are two fixed points x = 0, 1, and for µ = 0 every
point is a fixed point.

• If f(x, µ) = x exp [µ (1− x)], then

fx(x, µ) = exp [µ (1− x)]− µx exp [µ (1− x)] .

It follows that fx(0, µ) = eµ, so x = 0 is asymptotically stable for µ < 0,
when 0 < fx(0, µ) < 1, and unstable for µ > 0, when fx(0, µ) > 1.
Similarly, fx(1, µ) = 1−µ, so x = 1 is unstable for µ < 0 or µ > 2, and
asymptotically stable for 0 < µ < 2.

• At µ = 0, the fixed points are nonhyperbolic, with fx(x, 0) = 1, so
linearized stability does not tell us their stability. However, since ev-
ery point is a fixed point, all of the fixed points are stable but not
asymptotically stable.

• (b) At (x, µ) = (0, 0) and (x, µ) = (1, 0) there is a kind of degenerate
or critical transcritical bifurcation, in which the fixed-point branches
x = 0, x = 1 cross the branch at µ = 0. When this happens, the
branch x = 0 loses stability and the branch x = 1 gains stability. At
(x, µ) = (1, 2), the branch x = 1 loses stability as the corresponding
eigenvalue decreases through −1, so we expect a period-doubling bifur-
cation to occur. A more detailed analysis of the nonlinear terms, using
a Taylor expansion of f(x, µ) around (x, µ) = (1, 2), shows that there is
a super-critical period-doubling bifurcation. The bifurcation diagram
is sketched below.
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