METHODS OF APPLIED MATHEMATICS
Math 207A, Fall 2018
Midterm: Solutions

1 [40%] An SIR model for the spread of a disease in a population is given by
the following equations:

Si=a(l+R+S)—aS—0S1,

I; =bSI — (a+ o),

Ry =cl —aR,
where S(t) is the number of susceptible individuals, I(¢) is the number of
infected individuals, and R(t) is the number of recovered individuals at time
t. The positive parameters a, b, c > 0 have the following interpretations: a is
the birth rate, which is assumed to equal the death rate; b is the transmission
likelihood when a susceptible individual comes into contact with an infected
individual; and c¢ is the recovery rate. Recovered individuals are immune to
the disease.
(a) Show that S(t) + I(t) + R(t) = N is constant (where N > 0 is the total
population).
(b) Introduce dimensionless variables T' = at, x = S/N, y = I/N, z = R/N,
and show that x(7"), y(T') satisfy

rr =1—1x— Py, yr = By — (1 +7)y

for suitable dimensionless parameters 3,y > 0.

(c) Find all fixed points with x,y > 0 and (where possible) use linearization
to determine their stability. Consider all parameter values 5, > 0. What
do your results say in terms of modeling a disease?

Solution

e (a) It follows from the ODEs that (S+ 1+ R); = S;+ I; + R, =0, so
S + I + R = constant.

e (b) Writing 0; = a0r and transforming to dimensionless variables, we
get that
vy = (v +y+z)—x— Py,
yr = Bry — (L +7)y,
2 =YY — 2,



where LN
c
ﬁ = v= .
a a
Note that [a] = [¢] = 1/T and [b] = 1/TP where T denotes a dimen-
sion of time and P denotes a dimension of population, so £, v are

dimensionless.

e From (a), we have x4+ y + z = 1, so elimination of z from the equation
for = gives the stated equations for (z,y).

e (c) The equilibria satisfy

1—2—pPxy =0, (Br—(1+7))y=0.

From the second equation, either y = 0 when z = 1 from the first
equation, or x = ¥ when y = ¢y where

1+~ 1 1

5 YT1i, B

This solution for ¢ is only nonnegative when S > 1 + ~, in which case
0<z,9y,2<1,wherez=1—2 —y.

T =

e The Jacobian matrix of the system is

Df(w,y) = < _15;@ Ba —_(61x+ 7) ) |

e For the equilibrium (z,y) = (1,0), we have

Df(1,0) = < 0 B—(_16+7) )

with eigenvalues A\; = —1, Ay = § — (1 + 7). Hence, (1,0) is an
asymptotically stable node if 5 < 1 4 7 and an unstable saddle point
if 3 > 1+ ~. The equilibrium is nonhyperbolic if 5 = 1+ v, and we
can’t conclude its stability from the linearization.

e For the equilibrium (z,y) = (z,y), we have

o —B/(1+7) —(1+7)
Df(rc,y)=<5/(1+7)zl 0 7 )7
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with eigenvalues

‘=3 —%i\/(%) —4(B-(14+7)

If 5 > 1+ ~, then both of these eigenvalues have negative real part,
and the equilibrium is an asymptotically stable node or spiral point. If
B =1+ 7, then the equilibrium coincides with (1,0).

e In dimensional terms, it follows that the equilibrium (S, I, R) = (N, 0, 0)
with no disease present is asymptotically stable when bDN < a+c¢, mean-
ing that the transmission rate is less that the sum of the death rate and
the recovery rate. If bN > a + ¢, then this equilibrium loses stability
and the new stable state (S,I,R) = (Nz, Ny, NZ) is one in which a
nonzero fraction of the population is infected.

Remark. As f increases through 1++, the two equilibria cross and exchange
stability. This is an example of a transcritical bifurcation.



2 [30%] Duffing’s equation is
i+ 0t +x—a=0.

(a) Sketch the (x,7)-phase plane for § = 0. Classify the equilibria and
identify any homoclinic or heteroclinic orbits.

(b) Sketch the (x,4)-phase plane for 0 < § < 1. Classify the equilibria and
indicate the points in the phase plane whose w-limit set consists of the point
(x,2) = (0,0).

Solution

e (a) For § = 0, the system is a conservative system & + V'(x) = 0 with

potential

1 1
V(z) = §w2 — Zx4.

There are three equilibria: (0,0) is a nonlinear center; and (£1,0) are
saddle points. There are two heteroclinic orbits, one connecting (—1,0)
to (1,0), the other connecting (1,0) to (—1,0). The phase plane is
sketched on the next page.

e (b) When small damping is included, (0,0) becomes an asymptotically
stable spiral point, and (£1,0) remain saddle points. The basin of
attraction of (0,0) is the shaded region enclosed by the two stable
manifolds of the saddle points.
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3 [30%] Consider the system
t=y, y=-("+y -4y’

(a) Let
1

E(l’,y):—flf4+ ?

1
1t Tl
Derive an equation for E (z(t),y(t)), and show that there exist constants
0 < a < b such that a < E(z,y) < b is a trapping region for the flow.

(b) Show that the system has a limit cycle in the region a < E(x,y) < b.

Solution
e (a) We compute that
E=2%+yy=—y* (22 +y* —4).

It follows that E is decreasing on trajectories if 22 + y?> > 4 and in-
creasing on trajectories if 22 + y? < 4.

e For ¢ > 0, the level set E(z,y) = ¢ is compact, so the continuous
function 2% + y? attains its maximum value M(c) and minimum value
m(c) on the level set. Moreover, M(c¢) — 0 as ¢ — 0% and m(c) = oo
as ¢ — 00. Choose 0 < a < b such that M(a) < 4 and m(b) > 4.
Then the compact set a < F(x,y) < b is invariant since 2> +y? < 4 on
E(z,y) = a, so E is increasing, and x* +y*> > 4 on E(x,y) = b, so E
is decreasing.

e (b) The only equilibrium of the system is (z,y) = (0,0), so the invariant
region a < E(x,y) < b doesn’t contain any equilibria. The Poincaré-
Bendixson theorem implies that the w-limit set of any orbit starting
in the region is a periodic solution, so the region contains a periodic
solution (which is, in fact, a limit cycle).

Remark. Using the method of Lagrange multipliers, one can show that
the optimal values for enclosing the circle 22 + y?> = 4 between the curves
E(z,y) = a and E(x,y) = b are a = 7/4 and b = 4. Alternatively, note that

1
x2+y2:2c+x2_§$4, 0<a2?*<2yc  on E(z,y)=c

For ¢ > 1, we have M(c) = 2c + 1/2, attained at z? = 1, and m(c) = 2/c,
attained at z* = 2/c, so M(c) = 4 when ¢ = 7/4 and m(c) = 4 when ¢ = 4.
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