
Problem set 1: Solutions
Math 207A, Fall 2018

1. Consider the ODE for x(t) ∈ R given by

ẋ = x log |x|.

(a) Compute the flow map ϕt : R→ R. (We define x log |x| = 0 for x = 0.)

(b) Use your solution in (a) to verify explicitly that ϕt satisfies the group
property ϕs ◦ ϕt = ϕs+t, and find the fixed points of ϕt.

Solution

• (a) If x(t) 6= 0,±1, then separation of variables in the ODE and the
substitution u = log |x| gives∫

dx

x log |x|
=

∫
dt =⇒

∫
du

u
= t+ C =⇒ log |u| = t+ C.

If x(0) = x0, it follows that

x(t) = (sgnx0)e
log |x0|et = (sgnx0)|x0|e

t

.

We also have the equilibrium solutions x(t) = 0,±1.

• The flow map ϕt : R→ R is therefore given by

ϕt(x) = (sgn x)|x|et if x 6= 0, ϕt(0) = 0.

• (b) If x > 0, then

ϕt ◦ ϕs(x) = ϕt
(
xe

s)
=
(
xe

s)et
= xe

s+t

= ϕs+t(x),

and similarly for x < 0 and x = 0.

• The fixed points of ϕt, such that ϕt(x) = x, are given by x = 0,±1.



2. Define E : R2 → R by

E(x, y) =
1

6
x3 − 1

2
x2 +

1

2
y2.

(a) Sketch the phase plane of the Hamiltonian system ẋ = ∂E
∂y

, ẏ = −∂E
∂x

.
and discuss the stability of the equilibria.

(b) Sketch the phase plane of the gradient system ẋ = −∂E
∂x

, ẏ = −∂E
∂y

, and
discuss the stability of the equilibria.

Solution

• (a) Trajectories of the Hamiltonian system ẋ = y, ẏ = x − 1
2
x2 are

the level curves of E, in the direction of increasing x for y > 0. The
equilibrium (x, y) = (0, 0) is unstable (a saddle point). The equilib-
rium (x, y) = (2, 0), where V has a local minimum, is stable but not
asymptotically stable (a center).

• (b) Trajectories of the gradient system ẋ = x − 1
2
x2, ẏ = −y are or-

thogonal to the level curves of E, in the direction of decreasing E. The
equilibrium (x, y) = (0, 0) is unstable (a saddle point). The equilibrium
(x, y) = (2, 0) is asymptotically stable (a stable node).

Figure 1: The level curves of E. Phase planes are shown on the next page.
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Figure 2: To1): (a) Hamiltonian system. Bottom: (b) Gradient system.



3. The following Hamiltonian, depending on (q1, q2, p1, p2) ∈ R4, describes
two decoupled simple harmonic oscillators, one with positive energy, the other
with negative energy:

H(q1, q2, p1, p2) =
1

2

(
q21 + p21

)
− 1

2

(
q22 + p22

)
.

(a) Write down Hamilton’s equations and solve them. Deduce that the equi-
librium (q1, q2, p1, p2) = (0, 0, 0, 0) is stable. What kind of critical point does
H have at this equilibrium?

(b) Suppose we include an interaction term in the Hamiltonian

H(q1, q2, p1, p2) =
1

2

(
q21 + p21

)
− 1

2

(
q22 + p22

)
+ kq1q2,

where k ∈ R is a constant. What happens to the stability of the equilibrium?

Solution

• (a) Hamilton’s equations are

q̇1 = p1, ṗ1 = −q1, q̇2 = −p2, ṗ2 = q2.

These equations are linear since the Hamiltonian is quadratic. They
are a pair of decoupled Hamiltonian equations for (q1, p1) and (q2, p2).

• It follows that

1

2

(
q21 + p21

)
= E1,

1

2

(
q22 + p22

)
= E2, (1)

where E1, E2 are constants. In particular

q21 + q22 + p21 + p22 = 2(E1 + E2)

is constant on solutions, which implies that the equilibrium (0, 0, 0, 0)
is stable.

• Elimination of the pj gives two decoupled simple harmonic oscillator
equations

q̈1 + q1 = 0, q̈2 + q2 = 0,



with solutions

q1(t) = a1 cos(t+ δ1), p1(t) = −a1 sin(t+ δ1),

q2(t) = a2 cos(t+ δ2), p2(t) = a2 sin(t+ δ2),

where the aj, δj are constants, which also shows that the equilibrium
(0, 0, 0, 0) is stable.

• The equilibrium is a saddle point of H. Nevertheless, it is stable be-
cause of the additional conserved quantities in (1).

• (b) Hamilton’s equations are

q̇1 = p1, ṗ1 = −q1 − kq2, q̇2 = p2, ṗ2 = −q2 − kq1.

Elimination of variables gives

q
(4)
1 + 2q̈1 +

(
1 + k2

)
q1 = 0.

Looking for solutions q1(t) = ert, we get the characteristic equation

r4 + 2r2 + 1 + k2 = 0 =⇒
(
r2 + 1

)2
= −k2,

so
r2 = −1± ik =

√
1 + k2e±iδ, δ = arg(−1 + ik).

We then get 4 roots for r of the form ±a± ib where

a =
(
1 + k2

)1/4
cos

(
δ

2

)
.

If k 6= 0, then δ 6≡ π, so a 6= 0. Hence, two of these roots have positive
real part, meaning that there exist perturbations of the equilibrium
that grow exponentially in time, so the equilibrium is unstable.

• The energy of the (q1, p1)-oscillator increases with the amplitude of the
oscillations, while the energy of the (q2, p2)-oscillator decreases with
the amplitude of the oscillations. When the oscillators can exchange
energy, the amplitude of both oscillators can increase while conserving
the total energy of the system.



4. Consider the Lorenz equations

xt = σ(y − x), yt = rx− y − xz, zt = xy − βz,

with parameter values σ = 10, β = 8/3, r = 28.

(a) Solve the Lorenz equations numerically with initial conditions x(0) = −2,
y(0) = −4, z(0) = 12 for 0 ≤ t ≤ 30. Plot the trajectory of this solution in
(x, y, z)-phase space, and plot the graph of x(t) versus t.

(b) Solve the Lorenz equations numerically with initial conditions x(0) =
−2.0001, y(0) = −4, z(0) = 12 for 0 ≤ t ≤ 30, and plot the graph of x(t)
versus t on the same plot as the one from (a).

Solution

Figure 2: (a) Solution trajectory in phase space. The trajectory is winding
around the Lorenz attractor, which has a fractal structure, and jumping
unpredictably from one “wing” to the other.



Figure 3: (b) Blue: solution for x(t) with x(0) = −2. Red: solution for x(t)
with x(0) = −2.0001. Note the sensitive dependence on initial data.


