Problem Set 2
Math 207A, Fall 2018
Due: Fri., Oct. 12

1. Suppose that $x(t)=\cos t$ is a solution of the autonomous, scalar ODE $x_{t}=f(x)$ for some smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$. Show that $x(t)=-\sin t$ is also a solution.
2. Prove that a continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is locally Lipschitz continuous. If, in addition, there exists a constant $M \geq 0$ such that $|\partial f / \partial x| \leq M$ for all $x \in \mathbb{R}^{n}$, prove that f is globally Lipscitz continuous.
Hint. Note that

$$
f(x)-f(y)=\int_{0}^{1} \frac{d}{d t} f(t x+(1-t) y) d t
$$

3. Compute the Picard iterates for the following scalar initial value problems, and discuss their convergence:

$$
\text { (a) } x_{t}=x, \quad x(0)=1 ; \quad \text { (b) } x_{t}=2 t-2 \sqrt{\max (0, x)}, \quad x(0)=0 .
$$

4. Consider the following initial value problem for $x: \mathbb{R} \rightarrow \mathbb{R}$

$$
x_{t}+x=\cos t, \quad x(0)=x_{0} .
$$

(a) How would you classify this ODE? What do general theorems say about the local/global existence and uniqueness of solutions?
(b) Define a Poincaré map $P: \mathbb{R} \rightarrow \mathbb{R}$ by $P\left(x_{0}\right)=x(2 \pi)$, where $x(t)$ is the solution in (a). Compute P and find its fixed point. Show that the fixed point of P corresponds to a 2π-periodic solution of the original ODE. Discuss the stability of this solution.
5. Consider the following 2×2-system for $(x(t), y(t))$:

$$
x_{t}=x-y-x^{3}, \quad y_{t}=x+y-y^{3} .
$$

(a) What do general theorems say about the local/global existence and uniqueness of solutions of the initial value problem with $x(0)=x_{0}, y(0)=y_{0}$?
(b) Let $V(x, y)=x^{2}+y^{2}$. Compute

$$
\frac{d}{d t} V(x(t), y(t))
$$

and use the result to show that the solution of the initial value problem exists globally forwards in time for all $t \geq 0$.
(c) Let $0<a<1$ and $b>2$. If $\left(x_{0}, y_{0}\right) \neq(0,0)$, show that the solution satisfies

$$
a \leq x^{2}(t)+y^{2}(t) \leq b
$$

for all sufficiently large $t>0$. Do you have any guesses for the long time behavior of the solution?

