PROBLEM SET 2 Math 207A, Fall 2018 Due: Fri., Oct. 12

1. Suppose that $x(t) = \cos t$ is a solution of the autonomous, scalar ODE $x_t = f(x)$ for some smooth function $f : \mathbb{R} \to \mathbb{R}$. Show that $x(t) = -\sin t$ is also a solution.

2. Prove that a continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz continuous. If, in addition, there exists a constant $M \ge 0$ such that $|\partial f/\partial x| \le M$ for all $x \in \mathbb{R}^n$, prove that f is globally Lipscitz continuous. HINT. Note that

$$f(x) - f(y) = \int_0^1 \frac{d}{dt} f(tx + (1-t)y) dt$$

3. Compute the Picard iterates for the following scalar initial value problems, and discuss their convergence:

(a)
$$x_t = x$$
, $x(0) = 1$; (b) $x_t = 2t - 2\sqrt{\max(0, x)}$, $x(0) = 0$.

4. Consider the following initial value problem for $x : \mathbb{R} \to \mathbb{R}$

$$x_t + x = \cos t, \qquad x(0) = x_0.$$

(a) How would you classify this ODE? What do general theorems say about the local/global existence and uniqueness of solutions?

(b) Define a Poincaré map $P : \mathbb{R} \to \mathbb{R}$ by $P(x_0) = x(2\pi)$, where x(t) is the solution in (a). Compute P and find its fixed point. Show that the fixed point of P corresponds to a 2π -periodic solution of the original ODE. Discuss the stability of this solution.

5. Consider the following 2×2 -system for (x(t), y(t)):

$$x_t = x - y - x^3$$
, $y_t = x + y - y^3$.

(a) What do general theorems say about the local/global existence and uniqueness of solutions of the initial value problem with $x(0) = x_0, y(0) = y_0$?

(b) Let $V(x, y) = x^2 + y^2$. Compute

$$\frac{d}{dt}V\left(x(t), y(t)\right)$$

and use the result to show that the solution of the initial value problem exists globally forwards in time for all $t \ge 0$.

(c) Let 0 < a < 1 and b > 2. If $(x_0, y_0) \neq (0, 0)$, show that the solution satisfies

$$a \le x^2(t) + y^2(t) \le b$$

for all sufficiently large t > 0. Do you have any guesses for the long time behavior of the solution?