PROBLEM SET 2: Solutions
Math 207A, Fall 2018

1. Suppose that z(t) = cost is a solution of the autonomous, scalar ODE
x; = f(x) for some smooth function f : R — R. Show that z(f) = —sint is
also a solution.

Solution

e If z(t) is a solution of an autonomous equation, then y(t) = x(t + ¢) is
also a solution for any constant ¢, since

yi(t) = zi(z +c) = f(x(t + ) = [ (y(1) .

This argument doesn’t work for a nonautonomous equation z; = f(x,t),
since then

u(t) =zt +¢) = fat+e)t+c)=fylt),t+¢) # fy(t),1).

e We have —sint = cos(t + 7/2), so the result follows from (a).



2. Prove that a continuously differentiable function f : R™ — R" is locally
Lipschitz continuous. If, in addition, there exists a constant M > 0 such
that |0f;/0x;| < M for all z € R™ and 1 < ¢,j < n, prove that f is globally
Lipschitz continuous.

HinT. Note that

Solution

e Given a norm |z| of vectors x € R", we define the corresponding norm
of n x n matrices A by (see e.g. §3.1 of Teschl)

|Axz|
x|

|A| = max

In particular, |Az| < ||A|| || for any vector x € R™.

e The hint follows directly from the fundamental theorem of calculus:

/0 Lt (1= ) de = 1f (12 + (1= O] = (@) — (o).

e We have
%f(tx+ (1—t)y) = Df (tz + (1 - t)y) (z — y),

where D f = (0f;/0x;) is the Jacobian matrix of f = (f1,..., fn). The
component form of this equation is

d
Efi(tx—i_ (1—1t)y (‘9 + (1 =t)y) (z; — y5)-

It follows that

jtf (tz + (1 - t)y)‘ < |IDf (tz + (1 = )y)|| | — y].



e If f is continuously differentiable, then the components of D f are con-
tinuous and therefore uniformly bounded on any convex, compact set
K CR" so ||Df|| < M on K for some constant M. It follows that

iﬂm+&—ﬂwdt

@ -swi< [ |5

1
< [1Df -+ (= )] o~ ol d
0
< Mlz —y|
for all x,y € K, which shows that f is locally Lipschitz continuous.

o [f the partial derivatives of f are uniformly bounded on R", then the
previous estimate holds for all z,y € R", so f is globally Lipschitz
continuous.



3. Compute the Picard iterates for the following scalar initial value problems,
and discuss their convergence:

(a) xy =z, xz(0)=1; (b) &y = 2t — 2y/max(0,z), z(0)=0.

Solution

e (a) The nth iterate with 27" = 2™ and 2° = 1 is given by

n

e This result follows by induction. It holds for n = 0, and if the result
holds for some n > 0, then
CC't = H’

k=0

z"t(0) =1,

which implies the result for n + 1.

e The Picard iterates z"(t) are the Taylor polynomials of the solution
e'. They converge pointwise (and uniformly on compact sets) to the

solution on R.

e (b) We consider the cases t > 0 and t < 0 separately. If t > 0, then

"(1) 0 for even n,
€T =
t*  for odd n.

The iterates do not converge on [0, 00), but oscillate between 0 and the
solution #? of the initial value problem forward in time. (This result
does not contradict the Picard theorem because the right hand side of
the ODE is not Lipschitz continuous in z.)

o If t <0, then z"(t) = a,t* where ap = 0, a; = 1, and

py1 = 1+ +/a, n > 0. (1)
Since 1 < a,, < 3 implies that 1 < a,,, < 3, and a,, — a,_1 > 0 implies

that
Apt1 — Ap = \/Qp — 4/0p—1 > 07

it follows by induction that (a,) is an increasing sequence of positive
numbers that is bounded from above by 3.



e Bounded monotone sequences converge, so a, — a as n — oo for some
1 < a < 3. Taking the limit of (1), we find that a = 1 + y/a, which

implies that
3++5

a = 9 .

e It follows that the Picard iterates converge pointwise on (—oo, 0], and
uniformly on compact sets, to the solution z(t) = at? of the final value
problem backward in time.



4. Consider the following initial value problem for x : R — R
xy + x = cost, z(0) = .

(a) How would you classify this ODE? What do general theorems say about
the local/global existence and uniqueness of solutions?

(b) Define a Poincaré map P : R — R by P(z¢) = x(27), where z(t) is
the solution in (a). Compute P and find its fixed point. Show that the fixed
point of P corresponds to a 27-periodic solution of the original ODE. Discuss
the stability of this solution.

Solution

e (a) The ODE is first order, scalar, linear, constant coefficient, and
nonhomogeneous. The general theorem for linear equations with con-
tinuous coefficients and nonhomogeneous term implies that there is a
unique global solution.

e Alternatively, in order to use the Picard theorem stated in class, we
can write the equation as a 2 X 2 autonomous system for (z, s) where
s =t and
Ts = —T 4+ COS S, st = 1.
The vector field f(x,s) = (—x + cos s, 1) is continuously differentiable
with uniformly bounded derivatives on R2, so it is globally Lipschitz,
and the Picard theorem implies that there is a unique global solution.

e (b) Using an imtegrating factor e', we get that
d

7 (e'z) = € cost, z(0) = xo.

Integration of this equation and imposition of the initial condition gives

1 1
x(t) = (xo - 5) e '+ 5 (cost +sint).

e It follows that P : xg — x(27) is given by

1 1
P(zo) = ——)e 4.
(20) ($0 2) e+ 5
The fixed point of P(xg) is o = 1/2, which corresponds to the periodic
solution z(t) = (cost + sint)/2.



e The periodic solution is globally asymptotically stable, in the sense
that
1 .
x(t) — §(Cost+smt) as t — oo

for any 2o € R. Equivalently, the fixed point 1/2 is a globally asymptot-
ically stable fixed point of the discrete dynamical system x,, 11 = P(z,),
in the sense that

as n — o0

DN | —

Pn(ﬂfo) —

for any x( € R.



5. Consider the following 2 x 2-system for (z(t),y(t)):

n=x—y—2°,  y=z+y—y’ (2)

(a) What do general theorems say about the local/global existence and
uniqueness of solutions of the initial value problem with z(0) = zg, y(0) = yo?
(b) Let V(z,y) = 2* + y?. Compute

SV (alt). (1)

and use the result to show that the solution of the initial value problem exists
globally forwards in time for all ¢ > 0.

(c) Let 0 < a < 1 and b > 2. If (zg,y0) # (0,0), show that the solution
satisfies
a<2?(t)+y*(t) <b

for all sufficiently large ¢ > 0. Do you have any guesses for the long time
behavior of the solution?

Solution

e (a) The vector field f(z,y) = (x —y — 23, +y — y?) is continuously
differentiable, so the initial value problem has unique local solutions.

e We compute that

d dx dy
5V (@), y(t) = 22— +2y—
:2m(:1:—y—x3) —|—2y(x—|—y—y3)

:2(x2+y2—x4—y4).

Since
2 2 4 4 2 2 1 2 2\ 2 1 2 2\ 2
vy - -yt =2y S () -5 (@ -y
1 2
< 2 2 Lo 2
<zi4y 2(x +97)
we get that
dV
— < -V(V —-2). 3
< —V(V - 2) 3)

where we use the abbreviated notation V =V (z(t), y(¢)).



It follows that V' is a nonincreasing function of time whenever V' > 2.
Choosing ¢ > 2 such that V(zg, ) < ¢, we get that V (z(t),y(t)) <
¢ for all t > 0. The solution therefore remains bounded, and the
extension theorem implies that it exists for all ¢ > 0.

(c) Since

x2+y2—x4—y4:x2+y2— (x2+y2)2+291:2y2
> 2% 4y — (1:2 + y2)2

we also see that iV

—2>V(1-V). 4

2 V(=) (1
If 0 < a <1, then (4) implies that V; > 0 when V' = a, and if b > 2,
then (3) implies that V; < 0 when V' = b. It follows that all trajectories
of the system with V' = a or V = b enter the annulus a < V(z,y) < b,
after which they cannot leave it forward in time. (The annulus is called
a trapping region, or positively invariant set, for the flow.)

If V(zo,y0) > b, we claim that V(x(t),y(t)) = b for some sufficiently
large ¢t > 0, after which the trajectory enters the annulus a < V' < b
and is trapped there. Suppose, for contradiction, that V(x(t),y(t)) > b
for all ¢ > 0. Then (3) implies that dV' /dt < —e for all ¢ > 0 where
e=0b(b—2)>0, and

V{@(®)9() = V(o) + [ ZV(@(s) () ds < Vi) et

It follows that V(z(t),y(t)) — —oo as t — oo, and this contradiction
proves the claim.

If 0 < V(zo,9) < a, then a similar argument for V' an increasing
function of ¢ shows that the trajectory must enter a < V(z,y) < b,
which completes that proof that every nonzero solution is trapped in
the annulus for all sufficiently large ¢ > 0.

One can verify (numerically if necessary) that (z,y) = (0,0) is the
only equilibrium of the system. Thus, solutions in the annulus can-
not approach an equilibrium solution as t — oo. According to the



Poincaré-Bendixson theorem (to be discussed later in the class), the
only possibility left is that the solutions approach a periodic orbit.
The resulting limit cycle is shown in Figure 1.

Figure 1: Phase plane for (2) showing the limit cycle solution. The dashed
curves are the circles 22 + 3% = 1, 22 +y? = 2.



