
Problem set 2: Solutions
Math 207A, Fall 2018

1. Suppose that x(t) = cos t is a solution of the autonomous, scalar ODE
xt = f(x) for some smooth function f : R → R. Show that x(t) = − sin t is
also a solution.

Solution

• If x(t) is a solution of an autonomous equation, then y(t) = x(t+ c) is
also a solution for any constant c, since

yt(t) = xt(x+ c) = f (x(t+ c)) = f (y(t)) .

This argument doesn’t work for a nonautonomous equation xt = f(x, t),
since then

yt(t) = xt(t+ c) = f (x(t+ c), t+ c) = f (y(t), t+ c) 6= f (y(t), t) .

• We have − sin t = cos(t+ π/2), so the result follows from (a).



2. Prove that a continuously differentiable function f : Rn → Rn is locally
Lipschitz continuous. If, in addition, there exists a constant M ≥ 0 such
that |∂fi/∂xj| ≤ M for all x ∈ Rn and 1 ≤ i, j ≤ n, prove that f is globally
Lipschitz continuous.

Hint. Note that

f(x)− f(y) =

∫ 1

0

d

dt
f (tx+ (1− t)y) dt.

Solution

• Given a norm |x| of vectors x ∈ Rn, we define the corresponding norm
of n× n matrices A by (see e.g. §3.1 of Teschl)

‖A‖ = max
x 6=0

|Ax|
|x|

.

In particular, |Ax| ≤ ‖A‖ |x| for any vector x ∈ Rn.

• The hint follows directly from the fundamental theorem of calculus:∫ 1

0

d

dt
f (tx+ (1− t)y) dt = [f (tx+ (1− t)y)]t=1

t=0 = f(x)− f(y).

• We have

d

dt
f (tx+ (1− t)y) = Df (tx+ (1− t)y) (x− y),

where Df = (∂fi/∂xj) is the Jacobian matrix of f = (f1, . . . , fn). The
component form of this equation is

d

dt
fi (tx+ (1− t)y) =

n∑
j=1

∂fi
∂xj

(tx+ (1− t)y) (xj − yj).

It follows that∣∣∣∣ ddtf (tx+ (1− t)y)

∣∣∣∣ ≤ ‖Df (tx+ (1− t)y)‖ |x− y|.



• If f is continuously differentiable, then the components of Df are con-
tinuous and therefore uniformly bounded on any convex, compact set
K ⊂ Rn, so ‖Df‖ ≤M on K for some constant M . It follows that

|f(x)− f(y)| ≤
∫ 1

0

∣∣∣∣ ddtf (tx+ (1− t)y)

∣∣∣∣ dt
≤
∫ 1

0

‖Df (tx+ (1− t)y)‖ |x− y| dt

≤M |x− y|

for all x, y ∈ K, which shows that f is locally Lipschitz continuous.

• If the partial derivatives of f are uniformly bounded on Rn, then the
previous estimate holds for all x, y ∈ Rn, so f is globally Lipschitz
continuous.



3. Compute the Picard iterates for the following scalar initial value problems,
and discuss their convergence:

(a) xt = x, x(0) = 1; (b) xt = 2t− 2
√

max(0, x), x(0) = 0.

Solution

• (a) The nth iterate with xn+1
t = xn and x0 = 1 is given by

xn(t) =
n∑
k=0

tk

k!
.

• This result follows by induction. It holds for n = 0, and if the result
holds for some n ≥ 0, then

xn+1
t =

n∑
k=0

tk

k!
, xn+1(0) = 1,

which implies the result for n+ 1.

• The Picard iterates xn(t) are the Taylor polynomials of the solution
et. They converge pointwise (and uniformly on compact sets) to the
solution on R.

• (b) We consider the cases t ≥ 0 and t ≤ 0 separately. If t ≥ 0, then

xn(t) =

{
0 for even n,

t2 for odd n.

The iterates do not converge on [0,∞), but oscillate between 0 and the
solution t2 of the initial value problem forward in time. (This result
does not contradict the Picard theorem because the right hand side of
the ODE is not Lipschitz continuous in x.)

• If t ≤ 0, then xn(t) = ant
2 where a0 = 0, a1 = 1, and

an+1 = 1 +
√
an n ≥ 0. (1)

Since 1 ≤ an ≤ 3 implies that 1 ≤ an+1 ≤ 3, and an− an−1 > 0 implies
that

an+1 − an =
√
an −

√
an−1 > 0,

it follows by induction that (an) is an increasing sequence of positive
numbers that is bounded from above by 3.



• Bounded monotone sequences converge, so an → a as n→∞ for some
1 ≤ a ≤ 3. Taking the limit of (1), we find that a = 1 +

√
a, which

implies that

a =
3 +
√

5

2
.

• It follows that the Picard iterates converge pointwise on (−∞, 0], and
uniformly on compact sets, to the solution x(t) = at2 of the final value
problem backward in time.



4. Consider the following initial value problem for x : R→ R

xt + x = cos t, x(0) = x0.

(a) How would you classify this ODE? What do general theorems say about
the local/global existence and uniqueness of solutions?

(b) Define a Poincaré map P : R → R by P (x0) = x(2π), where x(t) is
the solution in (a). Compute P and find its fixed point. Show that the fixed
point of P corresponds to a 2π-periodic solution of the original ODE. Discuss
the stability of this solution.

Solution

• (a) The ODE is first order, scalar, linear, constant coefficient, and
nonhomogeneous. The general theorem for linear equations with con-
tinuous coefficients and nonhomogeneous term implies that there is a
unique global solution.

• Alternatively, in order to use the Picard theorem stated in class, we
can write the equation as a 2 × 2 autonomous system for (x, s) where
s = t and

xs = −x+ cos s, st = 1.

The vector field f(x, s) = (−x+ cos s, 1) is continuously differentiable
with uniformly bounded derivatives on R2, so it is globally Lipschitz,
and the Picard theorem implies that there is a unique global solution.

• (b) Using an imtegrating factor et, we get that

d

dt

(
etx
)

= et cos t, x(0) = x0.

Integration of this equation and imposition of the initial condition gives

x(t) =

(
x0 −

1

2

)
e−t +

1

2
(cos t+ sin t) .

• It follows that P : x0 7→ x(2π) is given by

P (x0) =

(
x0 −

1

2

)
e−2π +

1

2
.

The fixed point of P (x0) is x0 = 1/2, which corresponds to the periodic
solution x(t) = (cos t+ sin t)/2.



• The periodic solution is globally asymptotically stable, in the sense
that

x(t)→ 1

2
(cos t+ sin t) as t→∞

for any x0 ∈ R. Equivalently, the fixed point 1/2 is a globally asymptot-
ically stable fixed point of the discrete dynamical system xn+1 = P (xn),
in the sense that

P n(x0)→
1

2
as n→∞

for any x0 ∈ R.



5. Consider the following 2× 2-system for (x(t), y(t)):

xt = x− y − x3, yt = x+ y − y3. (2)

(a) What do general theorems say about the local/global existence and
uniqueness of solutions of the initial value problem with x(0) = x0, y(0) = y0?

(b) Let V (x, y) = x2 + y2. Compute

d

dt
V (x(t), y(t))

and use the result to show that the solution of the initial value problem exists
globally forwards in time for all t ≥ 0.

(c) Let 0 < a < 1 and b > 2. If (x0, y0) 6= (0, 0), show that the solution
satisfies

a < x2(t) + y2(t) < b

for all sufficiently large t > 0. Do you have any guesses for the long time
behavior of the solution?

Solution

• (a) The vector field f(x, y) = (x− y − x3, x+ y − y3) is continuously
differentiable, so the initial value problem has unique local solutions.

• We compute that

d

dt
V (x(t), y(t)) = 2x

dx

dt
+ 2y

dy

dt
= 2x

(
x− y − x3

)
+ 2y

(
x+ y − y3

)
= 2

(
x2 + y2 − x4 − y4

)
.

Since

x2 + y2 − x4 − y4 = x2 + y2 − 1

2

(
x2 + y2

)2 − 1

2

(
x2 − y2

)2
≤ x2 + y2 − 1

2

(
x2 + y2

)2
we get that

dV

dt
≤ −V (V − 2). (3)

where we use the abbreviated notation V = V (x(t), y(t)).



• It follows that V is a nonincreasing function of time whenever V ≥ 2.
Choosing c ≥ 2 such that V (x0, y0) ≤ c, we get that V (x(t), y(t)) ≤
c for all t ≥ 0. The solution therefore remains bounded, and the
extension theorem implies that it exists for all t ≥ 0.

• (c) Since

x2 + y2 − x4 − y4 = x2 + y2 −
(
x2 + y2

)2
+ 2x2y2

≥ x2 + y2 −
(
x2 + y2

)2
we also see that

dV

dt
≥ V (1− V ). (4)

• If 0 < a < 1, then (4) implies that Vt > 0 when V = a, and if b > 2,
then (3) implies that Vt < 0 when V = b. It follows that all trajectories
of the system with V = a or V = b enter the annulus a < V (x, y) < b,
after which they cannot leave it forward in time. (The annulus is called
a trapping region, or positively invariant set, for the flow.)

• If V (x0, y0) > b, we claim that V (x(t), y(t)) = b for some sufficiently
large t > 0, after which the trajectory enters the annulus a < V < b
and is trapped there. Suppose, for contradiction, that V (x(t), y(t)) > b
for all t ≥ 0. Then (3) implies that dV /dt < −ε for all t ≥ 0 where
ε = b(b− 2) > 0, and

V (x(t), y(t)) = V (x0, y0) +

∫ t

0

d

ds
V (x(s), y(s)) ds < V (x0, y0)− εt.

It follows that V (x(t), y(t)) → −∞ as t → ∞, and this contradiction
proves the claim.

• If 0 < V (x0, y0) < a, then a similar argument for V an increasing
function of t shows that the trajectory must enter a < V (x, y) < b,
which completes that proof that every nonzero solution is trapped in
the annulus for all sufficiently large t > 0.

• One can verify (numerically if necessary) that (x, y) = (0, 0) is the
only equilibrium of the system. Thus, solutions in the annulus can-
not approach an equilibrium solution as t → ∞. According to the



Poincaré-Bendixson theorem (to be discussed later in the class), the
only possibility left is that the solutions approach a periodic orbit.
The resulting limit cycle is shown in Figure 1.

Figure 1: Phase plane for (2) showing the limit cycle solution. The dashed
curves are the circles x2 + y2 = 1, x2 + y2 = 2.


