PROBLEM SET 2: Solutions Math 207A, Fall 2018

1. Suppose that $x(t) = \cos t$ is a solution of the autonomous, scalar ODE $x_t = f(x)$ for some smooth function $f : \mathbb{R} \to \mathbb{R}$. Show that $x(t) = -\sin t$ is also a solution.

Solution

• If x(t) is a solution of an autonomous equation, then y(t) = x(t+c) is also a solution for any constant c, since

$$y_t(t) = x_t(x+c) = f(x(t+c)) = f(y(t)).$$

This argument doesn't work for a nonautonomous equation $x_t = f(x, t)$, since then

$$y_t(t) = x_t(t+c) = f(x(t+c), t+c) = f(y(t), t+c) \neq f(y(t), t).$$

• We have $-\sin t = \cos(t + \pi/2)$, so the result follows from (a).

2. Prove that a continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz continuous. If, in addition, there exists a constant $M \ge 0$ such that $|\partial f_i/\partial x_j| \le M$ for all $x \in \mathbb{R}^n$ and $1 \le i, j \le n$, prove that f is globally Lipschitz continuous.

HINT. Note that

$$f(x) - f(y) = \int_0^1 \frac{d}{dt} f(tx + (1-t)y) dt.$$

Solution

• Given a norm |x| of vectors $x \in \mathbb{R}^n$, we define the corresponding norm of $n \times n$ matrices A by (see e.g. §3.1 of Teschl)

$$||A|| = \max_{x \neq 0} \frac{|Ax|}{|x|}.$$

In particular, $|Ax| \leq ||A|| |x|$ for any vector $x \in \mathbb{R}^n$.

• The hint follows directly from the fundamental theorem of calculus:

$$\int_0^1 \frac{d}{dt} f\left(tx + (1-t)y\right) \, dt = \left[f\left(tx + (1-t)y\right)\right]_{t=0}^{t=1} = f(x) - f(y).$$

• We have

$$\frac{d}{dt}f(tx + (1-t)y) = Df(tx + (1-t)y)(x-y),$$

where $Df = (\partial f_i / \partial x_j)$ is the Jacobian matrix of $f = (f_1, \ldots, f_n)$. The component form of this equation is

$$\frac{d}{dt}f_i\left(tx + (1-t)y\right) = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}\left(tx + (1-t)y\right)\left(x_j - y_j\right).$$

It follows that

$$\left|\frac{d}{dt}f(tx + (1-t)y)\right| \le \|Df(tx + (1-t)y)\| \|x - y\|.$$

• If f is continuously differentiable, then the components of Df are continuous and therefore uniformly bounded on any convex, compact set $K \subset \mathbb{R}^n$, so $\|Df\| \leq M$ on K for some constant M. It follows that

$$|f(x) - f(y)| \le \int_0^1 \left| \frac{d}{dt} f(tx + (1 - t)y) \right| dt$$

$$\le \int_0^1 \|Df(tx + (1 - t)y)\| \|x - y\| dt$$

$$\le M \|x - y\|$$

for all $x, y \in K$, which shows that f is locally Lipschitz continuous.

• If the partial derivatives of f are uniformly bounded on \mathbb{R}^n , then the previous estimate holds for all $x, y \in \mathbb{R}^n$, so f is globally Lipschitz continuous.

3. Compute the Picard iterates for the following scalar initial value problems, and discuss their convergence:

(a)
$$x_t = x$$
, $x(0) = 1$; (b) $x_t = 2t - 2\sqrt{\max(0, x)}$, $x(0) = 0$.

Solution

• (a) The *n*th iterate with $x_t^{n+1} = x^n$ and $x^0 = 1$ is given by

$$x^n(t) = \sum_{k=0}^n \frac{t^k}{k!}.$$

• This result follows by induction. It holds for n = 0, and if the result holds for some $n \ge 0$, then

$$x_t^{n+1} = \sum_{k=0}^n \frac{t^k}{k!}, \qquad x^{n+1}(0) = 1,$$

which implies the result for n + 1.

- The Picard iterates $x^n(t)$ are the Taylor polynomials of the solution e^t . They converge pointwise (and uniformly on compact sets) to the solution on \mathbb{R} .
- (b) We consider the cases $t \ge 0$ and $t \le 0$ separately. If $t \ge 0$, then

$$x^{n}(t) = \begin{cases} 0 & \text{for even } n, \\ t^{2} & \text{for odd } n. \end{cases}$$

The iterates do not converge on $[0, \infty)$, but oscillate between 0 and the solution t^2 of the initial value problem forward in time. (This result does not contradict the Picard theorem because the right hand side of the ODE is not Lipschitz continuous in x.)

• If $t \leq 0$, then $x^n(t) = a_n t^2$ where $a_0 = 0, a_1 = 1$, and

$$a_{n+1} = 1 + \sqrt{a_n} \qquad n \ge 0.$$
 (1)

Since $1 \le a_n \le 3$ implies that $1 \le a_{n+1} \le 3$, and $a_n - a_{n-1} > 0$ implies that

$$a_{n+1} - a_n = \sqrt{a_n} - \sqrt{a_{n-1}} > 0,$$

it follows by induction that (a_n) is an increasing sequence of positive numbers that is bounded from above by 3.

• Bounded monotone sequences converge, so $a_n \to a$ as $n \to \infty$ for some $1 \le a \le 3$. Taking the limit of (1), we find that $a = 1 + \sqrt{a}$, which implies that

$$a = \frac{3 + \sqrt{5}}{2}.$$

• It follows that the Picard iterates converge pointwise on $(-\infty, 0]$, and uniformly on compact sets, to the solution $x(t) = at^2$ of the final value problem backward in time. 4. Consider the following initial value problem for $x : \mathbb{R} \to \mathbb{R}$

$$x_t + x = \cos t, \qquad x(0) = x_0.$$

(a) How would you classify this ODE? What do general theorems say about the local/global existence and uniqueness of solutions?

(b) Define a Poincaré map $P : \mathbb{R} \to \mathbb{R}$ by $P(x_0) = x(2\pi)$, where x(t) is the solution in (a). Compute P and find its fixed point. Show that the fixed point of P corresponds to a 2π -periodic solution of the original ODE. Discuss the stability of this solution.

Solution

- (a) The ODE is first order, scalar, linear, constant coefficient, and nonhomogeneous. The general theorem for linear equations with continuous coefficients and nonhomogeneous term implies that there is a unique global solution.
- Alternatively, in order to use the Picard theorem stated in class, we can write the equation as a 2×2 autonomous system for (x, s) where s = t and

$$x_s = -x + \cos s, \qquad s_t = 1.$$

The vector field $f(x, s) = (-x + \cos s, 1)$ is continuously differentiable with uniformly bounded derivatives on \mathbb{R}^2 , so it is globally Lipschitz, and the Picard theorem implies that there is a unique global solution.

• (b) Using an integrating factor e^t , we get that

$$\frac{d}{dt}(e^t x) = e^t \cos t, \qquad x(0) = x_0.$$

Integration of this equation and imposition of the initial condition gives

$$x(t) = \left(x_0 - \frac{1}{2}\right)e^{-t} + \frac{1}{2}\left(\cos t + \sin t\right).$$

• It follows that $P: x_0 \mapsto x(2\pi)$ is given by

$$P(x_0) = \left(x_0 - \frac{1}{2}\right)e^{-2\pi} + \frac{1}{2}.$$

The fixed point of $P(x_0)$ is $x_0 = 1/2$, which corresponds to the periodic solution $x(t) = (\cos t + \sin t)/2$.

• The periodic solution is globally asymptotically stable, in the sense that

$$x(t) \to \frac{1}{2} \left(\cos t + \sin t \right)$$
 as $t \to \infty$

for any $x_0 \in \mathbb{R}$. Equivalently, the fixed point 1/2 is a globally asymptotically stable fixed point of the discrete dynamical system $x_{n+1} = P(x_n)$, in the sense that

$$P^n(x_0) \to \frac{1}{2}$$
 as $n \to \infty$

for any $x_0 \in \mathbb{R}$.

5. Consider the following 2×2 -system for (x(t), y(t)):

$$x_t = x - y - x^3, \qquad y_t = x + y - y^3.$$
 (2)

(a) What do general theorems say about the local/global existence and uniqueness of solutions of the initial value problem with $x(0) = x_0, y(0) = y_0$? (b) Let $V(x, y) = x^2 + y^2$. Compute

$$\frac{d}{dt}V\left(x(t), y(t)\right)$$

and use the result to show that the solution of the initial value problem exists globally forwards in time for all $t \ge 0$.

(c) Let 0 < a < 1 and b > 2. If $(x_0, y_0) \neq (0, 0)$, show that the solution satisfies

$$a < x^2(t) + y^2(t) < b$$

for all sufficiently large t > 0. Do you have any guesses for the long time behavior of the solution?

Solution

- (a) The vector field $f(x, y) = (x y x^3, x + y y^3)$ is continuously differentiable, so the initial value problem has unique local solutions.
- We compute that

$$\frac{d}{dt}V(x(t), y(t)) = 2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2x(x - y - x^3) + 2y(x + y - y^3) = 2(x^2 + y^2 - x^4 - y^4).$$

Since

$$\begin{aligned} x^{2} + y^{2} - x^{4} - y^{4} &= x^{2} + y^{2} - \frac{1}{2} \left(x^{2} + y^{2} \right)^{2} - \frac{1}{2} \left(x^{2} - y^{2} \right)^{2} \\ &\leq x^{2} + y^{2} - \frac{1}{2} \left(x^{2} + y^{2} \right)^{2} \end{aligned}$$

we get that

$$\frac{dV}{dt} \le -V(V-2). \tag{3}$$

where we use the abbreviated notation V = V(x(t), y(t)).

- It follows that V is a nonincreasing function of time whenever $V \ge 2$. Choosing $c \ge 2$ such that $V(x_0, y_0) \le c$, we get that $V(x(t), y(t)) \le c$ for all $t \ge 0$. The solution therefore remains bounded, and the extension theorem implies that it exists for all $t \ge 0$.
- (c) Since

$$x^{2} + y^{2} - x^{4} - y^{4} = x^{2} + y^{2} - (x^{2} + y^{2})^{2} + 2x^{2}y^{2}$$

$$\geq x^{2} + y^{2} - (x^{2} + y^{2})^{2}$$

we also see that

$$\frac{dV}{dt} \ge V(1-V). \tag{4}$$

- If 0 < a < 1, then (4) implies that $V_t > 0$ when V = a, and if b > 2, then (3) implies that $V_t < 0$ when V = b. It follows that all trajectories of the system with V = a or V = b enter the annulus a < V(x, y) < b, after which they cannot leave it forward in time. (The annulus is called a trapping region, or positively invariant set, for the flow.)
- If $V(x_0, y_0) > b$, we claim that V(x(t), y(t)) = b for some sufficiently large t > 0, after which the trajectory enters the annulus a < V < band is trapped there. Suppose, for contradiction, that V(x(t), y(t)) > bfor all $t \ge 0$. Then (3) implies that $dV/dt < -\epsilon$ for all $t \ge 0$ where $\epsilon = b(b-2) > 0$, and

$$V(x(t), y(t)) = V(x_0, y_0) + \int_0^t \frac{d}{ds} V(x(s), y(s)) \, ds < V(x_0, y_0) - \epsilon t.$$

It follows that $V(x(t), y(t)) \to -\infty$ as $t \to \infty$, and this contradiction proves the claim.

- If $0 < V(x_0, y_0) < a$, then a similar argument for V an increasing function of t shows that the trajectory must enter a < V(x, y) < b, which completes that proof that every nonzero solution is trapped in the annulus for all sufficiently large t > 0.
- One can verify (numerically if necessary) that (x, y) = (0, 0) is the only equilibrium of the system. Thus, solutions in the annulus cannot approach an equilibrium solution as $t \to \infty$. According to the

Poincaré-Bendixson theorem (to be discussed later in the class), the only possibility left is that the solutions approach a periodic orbit. The resulting limit cycle is shown in Figure 1.

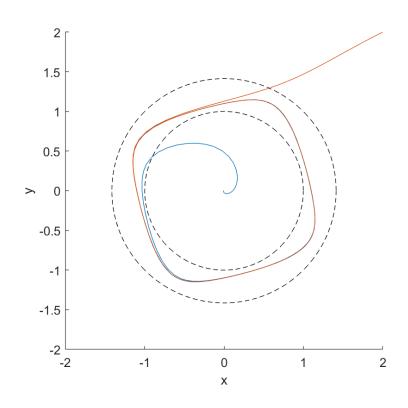


Figure 1: Phase plane for (2) showing the limit cycle solution. The dashed curves are the circles $x^2 + y^2 = 1$, $x^2 + y^2 = 2$.