Problem set 2: Solutions
Math 207A, Fall 2018

1. Suppose that $x(t)=\cos t$ is a solution of the autonomous, scalar ODE $x_{t}=f(x)$ for some smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$. Show that $x(t)=-\sin t$ is also a solution.

Solution

- If $x(t)$ is a solution of an autonomous equation, then $y(t)=x(t+c)$ is also a solution for any constant c, since

$$
y_{t}(t)=x_{t}(x+c)=f(x(t+c))=f(y(t)) .
$$

This argument doesn't work for a nonautonomous equation $x_{t}=f(x, t)$, since then

$$
y_{t}(t)=x_{t}(t+c)=f(x(t+c), t+c)=f(y(t), t+c) \neq f(y(t), t) .
$$

- We have $-\sin t=\cos (t+\pi / 2)$, so the result follows from (a).

2. Prove that a continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is locally Lipschitz continuous. If, in addition, there exists a constant $M \geq 0$ such that $\left|\partial f_{i} / \partial x_{j}\right| \leq M$ for all $x \in \mathbb{R}^{n}$ and $1 \leq i, j \leq n$, prove that f is globally Lipschitz continuous.
Hint. Note that

$$
f(x)-f(y)=\int_{0}^{1} \frac{d}{d t} f(t x+(1-t) y) d t
$$

Solution

- Given a norm $|x|$ of vectors $x \in \mathbb{R}^{n}$, we define the corresponding norm of $n \times n$ matrices A by (see e.g. $\S 3.1$ of Teschl)

$$
\|A\|=\max _{x \neq 0} \frac{|A x|}{|x|}
$$

In particular, $|A x| \leq\|A\||x|$ for any vector $x \in \mathbb{R}^{n}$.

- The hint follows directly from the fundamental theorem of calculus:

$$
\int_{0}^{1} \frac{d}{d t} f(t x+(1-t) y) d t=[f(t x+(1-t) y)]_{t=0}^{t=1}=f(x)-f(y)
$$

- We have

$$
\frac{d}{d t} f(t x+(1-t) y)=D f(t x+(1-t) y)(x-y)
$$

where $D f=\left(\partial f_{i} / \partial x_{j}\right)$ is the Jacobian matrix of $f=\left(f_{1}, \ldots, f_{n}\right)$. The component form of this equation is

$$
\frac{d}{d t} f_{i}(t x+(1-t) y)=\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(t x+(1-t) y)\left(x_{j}-y_{j}\right)
$$

It follows that

$$
\left|\frac{d}{d t} f(t x+(1-t) y)\right| \leq\|D f(t x+(1-t) y)\||x-y|
$$

- If f is continuously differentiable, then the components of $D f$ are continuous and therefore uniformly bounded on any convex, compact set $K \subset \mathbb{R}^{n}$, so $\|D f\| \leq M$ on K for some constant M. It follows that

$$
\begin{aligned}
|f(x)-f(y)| & \leq \int_{0}^{1}\left|\frac{d}{d t} f(t x+(1-t) y)\right| d t \\
& \leq \int_{0}^{1}\|D f(t x+(1-t) y)\||x-y| d t \\
& \leq M|x-y|
\end{aligned}
$$

for all $x, y \in K$, which shows that f is locally Lipschitz continuous.

- If the partial derivatives of f are uniformly bounded on \mathbb{R}^{n}, then the previous estimate holds for all $x, y \in \mathbb{R}^{n}$, so f is globally Lipschitz continuous.

3. Compute the Picard iterates for the following scalar initial value problems, and discuss their convergence:
(a) $x_{t}=x, \quad x(0)=1 ; \quad$ (b) $x_{t}=2 t-2 \sqrt{\max (0, x)}, \quad x(0)=0$.

Solution

- (a) The nth iterate with $x_{t}^{n+1}=x^{n}$ and $x^{0}=1$ is given by

$$
x^{n}(t)=\sum_{k=0}^{n} \frac{t^{k}}{k!} .
$$

- This result follows by induction. It holds for $n=0$, and if the result holds for some $n \geq 0$, then

$$
x_{t}^{n+1}=\sum_{k=0}^{n} \frac{t^{k}}{k!}, \quad x^{n+1}(0)=1
$$

which implies the result for $n+1$.

- The Picard iterates $x^{n}(t)$ are the Taylor polynomials of the solution e^{t}. They converge pointwise (and uniformly on compact sets) to the solution on \mathbb{R}.
- (b) We consider the cases $t \geq 0$ and $t \leq 0$ separately. If $t \geq 0$, then

$$
x^{n}(t)= \begin{cases}0 & \text { for even } n \\ t^{2} & \text { for odd } n\end{cases}
$$

The iterates do not converge on $[0, \infty)$, but oscillate between 0 and the solution t^{2} of the initial value problem forward in time. (This result does not contradict the Picard theorem because the right hand side of the ODE is not Lipschitz continuous in x.)

- If $t \leq 0$, then $x^{n}(t)=a_{n} t^{2}$ where $a_{0}=0, a_{1}=1$, and

$$
\begin{equation*}
a_{n+1}=1+\sqrt{a_{n}} \quad n \geq 0 . \tag{1}
\end{equation*}
$$

Since $1 \leq a_{n} \leq 3$ implies that $1 \leq a_{n+1} \leq 3$, and $a_{n}-a_{n-1}>0$ implies that

$$
a_{n+1}-a_{n}=\sqrt{a_{n}}-\sqrt{a_{n-1}}>0,
$$

it follows by induction that $\left(a_{n}\right)$ is an increasing sequence of positive numbers that is bounded from above by 3 .

- Bounded monotone sequences converge, so $a_{n} \rightarrow a$ as $n \rightarrow \infty$ for some $1 \leq a \leq 3$. Taking the limit of (1), we find that $a=1+\sqrt{a}$, which implies that

$$
a=\frac{3+\sqrt{5}}{2}
$$

- It follows that the Picard iterates converge pointwise on $(-\infty, 0]$, and uniformly on compact sets, to the solution $x(t)=a t^{2}$ of the final value problem backward in time.

4. Consider the following initial value problem for $x: \mathbb{R} \rightarrow \mathbb{R}$

$$
x_{t}+x=\cos t, \quad x(0)=x_{0} .
$$

(a) How would you classify this ODE? What do general theorems say about the local/global existence and uniqueness of solutions?
(b) Define a Poincaré map $P: \mathbb{R} \rightarrow \mathbb{R}$ by $P\left(x_{0}\right)=x(2 \pi)$, where $x(t)$ is the solution in (a). Compute P and find its fixed point. Show that the fixed point of P corresponds to a 2π-periodic solution of the original ODE. Discuss the stability of this solution.

Solution

- (a) The ODE is first order, scalar, linear, constant coefficient, and nonhomogeneous. The general theorem for linear equations with continuous coefficients and nonhomogeneous term implies that there is a unique global solution.
- Alternatively, in order to use the Picard theorem stated in class, we can write the equation as a 2×2 autonomous system for (x, s) where $s=t$ and

$$
x_{s}=-x+\cos s, \quad s_{t}=1 .
$$

The vector field $f(x, s)=(-x+\cos s, 1)$ is continuously differentiable with uniformly bounded derivatives on \mathbb{R}^{2}, so it is globally Lipschitz, and the Picard theorem implies that there is a unique global solution.

- (b) Using an imtegrating factor e^{t}, we get that

$$
\frac{d}{d t}\left(e^{t} x\right)=e^{t} \cos t, \quad x(0)=x_{0}
$$

Integration of this equation and imposition of the initial condition gives

$$
x(t)=\left(x_{0}-\frac{1}{2}\right) e^{-t}+\frac{1}{2}(\cos t+\sin t) .
$$

- It follows that $P: x_{0} \mapsto x(2 \pi)$ is given by

$$
P\left(x_{0}\right)=\left(x_{0}-\frac{1}{2}\right) e^{-2 \pi}+\frac{1}{2} .
$$

The fixed point of $P\left(x_{0}\right)$ is $x_{0}=1 / 2$, which corresponds to the periodic solution $x(t)=(\cos t+\sin t) / 2$.

- The periodic solution is globally asymptotically stable, in the sense that

$$
x(t) \rightarrow \frac{1}{2}(\cos t+\sin t) \quad \text { as } t \rightarrow \infty
$$

for any $x_{0} \in \mathbb{R}$. Equivalently, the fixed point $1 / 2$ is a globally asymptotically stable fixed point of the discrete dynamical system $x_{n+1}=P\left(x_{n}\right)$, in the sense that

$$
P^{n}\left(x_{0}\right) \rightarrow \frac{1}{2} \quad \text { as } n \rightarrow \infty
$$

for any $x_{0} \in \mathbb{R}$.
5. Consider the following 2×2-system for $(x(t), y(t))$:

$$
\begin{equation*}
x_{t}=x-y-x^{3}, \quad y_{t}=x+y-y^{3} . \tag{2}
\end{equation*}
$$

(a) What do general theorems say about the local/global existence and uniqueness of solutions of the initial value problem with $x(0)=x_{0}, y(0)=y_{0}$?
(b) Let $V(x, y)=x^{2}+y^{2}$. Compute

$$
\frac{d}{d t} V(x(t), y(t))
$$

and use the result to show that the solution of the initial value problem exists globally forwards in time for all $t \geq 0$.
(c) Let $0<a<1$ and $b>2$. If $\left(x_{0}, y_{0}\right) \neq(0,0)$, show that the solution satisfies

$$
a<x^{2}(t)+y^{2}(t)<b
$$

for all sufficiently large $t>0$. Do you have any guesses for the long time behavior of the solution?

Solution

- (a) The vector field $f(x, y)=\left(x-y-x^{3}, x+y-y^{3}\right)$ is continuously differentiable, so the initial value problem has unique local solutions.
- We compute that

$$
\begin{aligned}
\frac{d}{d t} V(x(t), y(t)) & =2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
& =2 x\left(x-y-x^{3}\right)+2 y\left(x+y-y^{3}\right) \\
& =2\left(x^{2}+y^{2}-x^{4}-y^{4}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
x^{2}+y^{2}-x^{4}-y^{4} & =x^{2}+y^{2}-\frac{1}{2}\left(x^{2}+y^{2}\right)^{2}-\frac{1}{2}\left(x^{2}-y^{2}\right)^{2} \\
& \leq x^{2}+y^{2}-\frac{1}{2}\left(x^{2}+y^{2}\right)^{2}
\end{aligned}
$$

we get that

$$
\begin{equation*}
\frac{d V}{d t} \leq-V(V-2) \tag{3}
\end{equation*}
$$

where we use the abbreviated notation $V=V(x(t), y(t))$.

- It follows that V is a nonincreasing function of time whenever $V \geq 2$. Choosing $c \geq 2$ such that $V\left(x_{0}, y_{0}\right) \leq c$, we get that $V(x(t), y(t)) \leq$ c for all $t \geq 0$. The solution therefore remains bounded, and the extension theorem implies that it exists for all $t \geq 0$.
- (c) Since

$$
\begin{aligned}
x^{2}+y^{2}-x^{4}-y^{4} & =x^{2}+y^{2}-\left(x^{2}+y^{2}\right)^{2}+2 x^{2} y^{2} \\
& \geq x^{2}+y^{2}-\left(x^{2}+y^{2}\right)^{2}
\end{aligned}
$$

we also see that

$$
\begin{equation*}
\frac{d V}{d t} \geq V(1-V) \tag{4}
\end{equation*}
$$

- If $0<a<1$, then (4) implies that $V_{t}>0$ when $V=a$, and if $b>2$, then (3) implies that $V_{t}<0$ when $V=b$. It follows that all trajectories of the system with $V=a$ or $V=b$ enter the annulus $a<V(x, y)<b$, after which they cannot leave it forward in time. (The annulus is called a trapping region, or positively invariant set, for the flow.)
- If $V\left(x_{0}, y_{0}\right)>b$, we claim that $V(x(t), y(t))=b$ for some sufficiently large $t>0$, after which the trajectory enters the annulus $a<V<b$ and is trapped there. Suppose, for contradiction, that $V(x(t), y(t))>b$ for all $t \geq 0$. Then (3) implies that $d V / d t<-\epsilon$ for all $t \geq 0$ where $\epsilon=b(b-2)>0$, and

$$
V(x(t), y(t))=V\left(x_{0}, y_{0}\right)+\int_{0}^{t} \frac{d}{d s} V(x(s), y(s)) d s<V\left(x_{0}, y_{0}\right)-\epsilon t
$$

It follows that $V(x(t), y(t)) \rightarrow-\infty$ as $t \rightarrow \infty$, and this contradiction proves the claim.

- If $0<V\left(x_{0}, y_{0}\right)<a$, then a similar argument for V an increasing function of t shows that the trajectory must enter $a<V(x, y)<b$, which completes that proof that every nonzero solution is trapped in the annulus for all sufficiently large $t>0$.
- One can verify (numerically if necessary) that $(x, y)=(0,0)$ is the only equilibrium of the system. Thus, solutions in the annulus cannot approach an equilibrium solution as $t \rightarrow \infty$. According to the

Poincaré-Bendixson theorem (to be discussed later in the class), the only possibility left is that the solutions approach a periodic orbit. The resulting limit cycle is shown in Figure 1.

Figure 1: Phase plane for (2) showing the limit cycle solution. The dashed curves are the circles $x^{2}+y^{2}=1, x^{2}+y^{2}=2$.

