Problem set 3: Math 207A, Fall 2018
Due: Fri., Oct. 19

1. A model for a population $x(t) \geq 0$ with logistic growth and a constant rate of harvesting is

$$
x_{t}=\mu x\left(1-\frac{x}{K}\right)-H
$$

where the parameters μ, K, H are positive constants.
(a) Show that a nondimensionalized form of the equation is

$$
\begin{equation*}
x_{t}=x(1-x)-h, \tag{1}
\end{equation*}
$$

and express the dimensionless parameter h as a ratio of two times.
(b) Sketch a graph of the equilibria as functions of h, and sketch the phase line of (1) for various values of $h>0$. Determine the stability of the equilibria, both from the phase line and from their linearized stability. For what values of the initial (nondimensionalized) population $x_{0}>0$ and harvesting rate $h>0$ does the population become extinct?
2. The graph $y=f(x)$ of a Lipschitz function $f: \mathbb{R} \rightarrow \mathbb{R}$ is shown below. The function f has zeros only at certain integer values of x and is never zero outside the x-interval shown.
(a) Sketch the phase line for the ODE $x_{t}=f(x)$ and state the stability of the equilibria. Which of the equilibria are hyperbolic?
(b) Sketch the graph of the solution of the initial value problem with $x(0)=0$.
(c) Sketch the graph of a potential $E(x)$ such that $f(x)=-E^{\prime}(x)$.

3. A spherical raindrop with volume $V(t)$ and surface area $A(t)$ evaporates at a rate proportional to its surface area, meaning that $V_{t}=-k A$ for some constant $k>0$. Write down an ODE for V and show that the raindrop evaporates completely in finite time. Find an expression for the evaporation time T in terms of k and the initial volume V_{0} of the drop, and verify that your result is dimensionally consistent. Why doesn't this result violate the uniqueness part of the Picard theorem?
4. (a) Consider a scalar ODE $x_{t}=f(x)$ where $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Prove that the ODE cannot have a non-constant periodic solution with minimal period $T>0$ such that $x(t+T)=x(t)$ for all $t \in \mathbb{R}$. Hint. Consider the integral

$$
\int_{0}^{T} f(x) x_{t} d t
$$

(b) Why doesn't your argument in (a) apply to an ODE $\theta_{t}=f(\theta)$ on the circle \mathbb{T} ?
5. (a) A Bernoulli equation is an ODE of the form

$$
x_{t}=a(t) x+b(t) x^{n}
$$

where a, b are continuous functions and $n \neq 1$. Show that the transformation

$$
u=\frac{1}{x^{n-1}}
$$

reduces a Bernoulli equation to a linear equation for u. Use this transformation to solve the logistic equation $x_{t}=x(1-x)$.
(b) A Riccati equation is an ODE of the form

$$
x_{t}=a(t)+b(t) x+c(t) x^{2} .
$$

where a, b, c are continuous functions, with $c \neq 0$. Show that the transformation

$$
x=-\frac{u_{t}}{c u}
$$

reduces the Riccati equation to a second order, linear equation for u. Use this transformation to solve the logistic equation $x_{t}=x(1-x)$.

