PROBLEM SET 3: Solutions
Math 207A, Fall 2018

1. A model for a population z(¢) > 0 with logistic growth and a constant
rate of harvesting is

x
:ct:/m<1—%)—[{

where the parameters i, K, H are positive constants.

(a) Show that a nondimensionalized form of the equation is
v =x(l—x)—h, (1)

and express the dimensionless parameter h as a ratio of two times.

(b) Sketch a graph of the equilibria as functions of h, and sketch the phase line
of (1) for various values of h > 0. Determine the stability of the equilibria, both
from the phase line and from their linearized stability. For what values of the
initial (nondimensionalized) population 2y > 0 and harvesting rate h > 0 does the
population become extinct?

Solution

e (a) Let P denote a unit of population and 7' denote a unit of time, then the
parameters have dimensions

e Define dimensionless variables based on logistic growth parameters,

i = t = pt

= — = ut.

K 2

Then I

Dropping tildes and letting h = (1/u)/(K/H) yield (1).
e (b) To find equilibria, we solve the equation
flz):=2(1l—2)—h=0,

which gives
1++1—4h

Tr+ = 9



e The linearized equations of the nondimensionalized ODE around the equi-
libria (if exist) are
xp = (1 —2zy)z.

e When 0 < h < 1/4, the equation admits two real solutions, the phase line
(blue) and stability of equilibria can be determined based on the sign of
f(x). x_ is an unstable equilibrium, and =4 is an asymptotically stable
equilibrium. The two equilibria are hyperbolic, and the linearized stability
agree with the nonlinear stability.
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e When h = 1/4, the equation f(x) = 0 has two repeated solutions x4 = 1/2.
The phase line (blue) is plotted as follows. The only equilibrium x4 is semi-
stable (unstable). The linearized equation in this case is z; = 0, and the
equilibrium is linearly stable.
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e When h > 1/4, the equation f(z) = 0 admits no real solution. Therefore,
there is no equilibrium point. The phase line is plotted as follows.
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e In summary, if we use solid line to keep track of the stable nodes, and dashed
line to keep track of the unstable nodes, a graph of equilibria as functions

of his
ﬂﬂ?i

Ty

=y

e It follows from the stability of equilibria that the population becomes extinct
if h>1/4,or h<1/4 and 29 < z_.



2. The graph y = f(z) of a Lipschitz function f : R — R is shown below. The
function f has zeros only at certain integer values of x and is never zero outside
the z-interval shown.

(a) Sketch the phase line for the ODE z; = f(x) and state the stability of the
equilibria. Which of the equilibria are hyperbolic?

(b) Sketch the graph of the solution of the initial value problem with x(0) = 0.
(c) Sketch the graph of a potential E(z) such that f(z) = —FE'(x).
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Solution

e (a) Based on the graph of f, the phase line for the ODE is
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e We read from above graph that the equilibria 2 is asymptotically stable, —3
and 4 are unstable, and —1 is semi-stable (also unstable). Only —3 and 2
are hyperbolic as the derivatives of f there are nonzero.

e (b) A qualitative sketch of the solution with z(0) = 0 is



e (c) A sketch of the graph of potential FE(x) is as follows. A vertical transla-
tion of the graph is allowed, based on the choice of the base of the potential.
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3. A spherical raindrop with volume V' (¢) and surface area A(t) evaporates at a rate
proportional to its surface area, meaning that V; = —kA for some constant k& > 0.
Write down an ODE for V' and show that the raindrop evaporates completely in
finite time. Find an expression for the evaporation time 7" in terms of k and the
initial volume Vj of the drop, and verify that your result is dimensionally consistent.
Why doesn’t this result violate the uniqueness part of the Picard theorem?

Solution

e By the formula of surface area of 2-sphere and volume of 3-unit ball, we have
the following equation

A= (36m)3V3.

e The ODE for V is then

2

‘/t = _Kvga
where K = (367‘&')%]€ > 0 is a constant.

e It is obvious that V = 0 is an equilibrium.

e Solving the Cauchy problem for the model with initial value V(0) = Vi > 0
by separating variables yields

3 ~
e The evaporation time T = % Let L denote a unit of length, and T
denote a unit of time, then

which shows consistency.

e This resu}t does not violate the uniqueness part of the the Picard theorem,
as the V'3 is not Lipschitz continuous at V = 0.



4. (a) Consider a scalar ODE z; = f(x) where f : R — R is continuous. Prove
that the ODE cannot have a non-constant periodic solution with minimal period
T > 0 such that z(t + 1) = z(t) for all t € R. HINT. Consider the integral

T
/ f(z)xs dt,
0
(b) Why doesn’t your argument in (a) apply to an ODE 6; = f(6) on the circle T?

Solution

e (a) Suppose that there is a periodic solution to the ODE z; = f(z) satisfying
x(t+T) = z(t) for some T' > 0 and all ¢ € R. Using fundamental theorem
of calculus, we find that

T ) _ T _ .r(T) _
/0 (1) 2dt = /0 f(@)z(t)dt = / ), Js=o )

e However, notice that |z;|? is a nonnegative continuous function on [0, T]. By
above equality, we conlcude that x;(t) = 0 on [0, 7], which is saying that =
must be a constant solution.

e (b) When the problem is posed on T and we use R as a covering space of T
to describe the system, we are allowing solutions to have 27-jumps within
one period. As a consequence, the last equality of (2) could be nonzero.



5. (a) A Bernoulli equation is an ODE of the form
xr = a(t)z + b(t)a"

where a, b are continuous functions and n # 1. Show that the transformation

U= xn—l

reduces a Bernoulli equation to a linear equation for u. Use this transformation
to solve the logistic equation z; = z(1 — x).
(b) A Riccati equation is an ODE of the form

zy = a(t) + b(t)z + c(t)z>.

where a, b, ¢ are continuous functions, with ¢ # 0. Show that the transformation

Ut
r=—-—
cu

reduces the Riccati equation to a second order, linear equation for u. Use this
transformation to solve the logistic equation z; = z(1 — ).

Solution

e (a) If u =1/2"!, we deduce that u; = (1 — n)z;/2". Then the Bernoulli
equation can be rewritten in terms of u as

ug = (1 =n)[a(t)u+b(t)],
which is a linear equation for w.

e The logistic equation z; = x(1—=z) is a special case of the Bernoulli equation
with a(t) =1, b(t) = —1, and n = 2. Using the transformation v = 1/x, we
find that the equation is reduced to

ut:—u+1.

e We solve this ODE by separation of variables with initial condition u(0) =

1/xo,
u(t) = (;0 — 1) e '+ 1.

Then the solution to the logistic equation is

o
(1—zp)e t +xp

x(t) =



o (b) If x = —uy/(cu), then we find that

2 2
Culy — Cup — cpuuy 9 buy uj
_ (Cu)2 =Tt = a(t) —+ b(t)x + C(t).’E =a — Ciu + @

Simplifying this equation yields

Upp — (b+c—ct>ut+acu:0.

e The logistic equation z; = z(1 — x) is a special case of the Ricatti equation
with a(t) =0, b(t) = 1, and ¢(t) = —1. Using the transformation =z = u;/u,
we find that the equation is reduced to

Ut — Ut = 0.
e Solving this equation yields
u(t) = cre’ + ca.

where c¢; and co are constants. Notice that = % log |u|. We obtain

C1
() = —————.
®) c1+ cpet
Assuming 2(0) = xg gives the solution
zo

2(t) = (1—xp)et+x¢



