
Problem set 3: Solutions
Math 207A, Fall 2018

1. A model for a population x(t) ≥ 0 with logistic growth and a constant
rate of harvesting is

xt = µx
(
1− x

K

)
−H

where the parameters µ, K, H are positive constants.

(a) Show that a nondimensionalized form of the equation is

xt = x(1− x)− h, (1)

and express the dimensionless parameter h as a ratio of two times.
(b) Sketch a graph of the equilibria as functions of h, and sketch the phase line
of (1) for various values of h > 0. Determine the stability of the equilibria, both
from the phase line and from their linearized stability. For what values of the
initial (nondimensionalized) population x0 > 0 and harvesting rate h > 0 does the
population become extinct?

Solution

• (a) Let P denote a unit of population and T denote a unit of time, then the
parameters have dimensions

[µ] =
1

T
, [K] = P, [H] =

P

T
.

• Define dimensionless variables based on logistic growth parameters,

x̃ =
x

K
, t̃ = µt.

Then

x̃t̃ = x̃(1− x̃)− H

µK
.

Dropping tildes and letting h = (1/µ)/(K/H) yield (1).

• (b) To find equilibria, we solve the equation

f(x) := x(1− x)− h = 0,

which gives

x± =
1±
√

1− 4h

2
.



• The linearized equations of the nondimensionalized ODE around the equi-
libria (if exist) are

xt = (1− 2x±)x.

• When 0 < h < 1/4, the equation admits two real solutions, the phase line
(blue) and stability of equilibria can be determined based on the sign of
f(x). x− is an unstable equilibrium, and x+ is an asymptotically stable
equilibrium. The two equilibria are hyperbolic, and the linearized stability
agree with the nonlinear stability.

• When h = 1/4, the equation f(x) = 0 has two repeated solutions x± = 1/2.
The phase line (blue) is plotted as follows. The only equilibrium x± is semi-
stable (unstable). The linearized equation in this case is xt = 0, and the
equilibrium is linearly stable.

• When h > 1/4, the equation f(x) = 0 admits no real solution. Therefore,
there is no equilibrium point. The phase line is plotted as follows.



• In summary, if we use solid line to keep track of the stable nodes, and dashed
line to keep track of the unstable nodes, a graph of equilibria as functions
of h is

• It follows from the stability of equilibria that the population becomes extinct
if h > 1/4, or h < 1/4 and x0 < x−.



2. The graph y = f(x) of a Lipschitz function f : R → R is shown below. The
function f has zeros only at certain integer values of x and is never zero outside
the x-interval shown.

(a) Sketch the phase line for the ODE xt = f(x) and state the stability of the
equilibria. Which of the equilibria are hyperbolic?

(b) Sketch the graph of the solution of the initial value problem with x(0) = 0.

(c) Sketch the graph of a potential E(x) such that f(x) = −E′(x).

Solution

• (a) Based on the graph of f , the phase line for the ODE is

• We read from above graph that the equilibria 2 is asymptotically stable, −3
and 4 are unstable, and −1 is semi-stable (also unstable). Only −3 and 2
are hyperbolic as the derivatives of f there are nonzero.

• (b) A qualitative sketch of the solution with x(0) = 0 is



• (c) A sketch of the graph of potential E(x) is as follows. A vertical transla-
tion of the graph is allowed, based on the choice of the base of the potential.



3. A spherical raindrop with volume V (t) and surface areaA(t) evaporates at a rate
proportional to its surface area, meaning that Vt = −kA for some constant k > 0.
Write down an ODE for V and show that the raindrop evaporates completely in
finite time. Find an expression for the evaporation time T in terms of k and the
initial volume V0 of the drop, and verify that your result is dimensionally consistent.
Why doesn’t this result violate the uniqueness part of the Picard theorem?

Solution

• By the formula of surface area of 2-sphere and volume of 3-unit ball, we have
the following equation

A = (36π)
1
3V

2
3 .

• The ODE for V is then
Vt = −KV

2
3 ,

where K = (36π)
1
3k > 0 is a constant.

• It is obvious that V = 0 is an equilibrium.

• Solving the Cauchy problem for the model with initial value V (0) = V0 > 0
by separating variables yields

V (t) =


(

3
√
V0 − K

3 t
)3

if t ≤ 3 3√V0
K ,

0 if t > 3 3√V0
K .

• The evaporation time T = 3 3√V0
K . Let L denote a unit of length, and T̃

denote a unit of time, then

[K] = [k] =
[V ]

[T ] · [A]
=
L

T̃
,

[
V

1
3

K

]
= T̃ = [T ],

which shows consistency.

• This result does not violate the uniqueness part of the the Picard theorem,
as the V

2
3 is not Lipschitz continuous at V = 0.



4. (a) Consider a scalar ODE xt = f(x) where f : R → R is continuous. Prove
that the ODE cannot have a non-constant periodic solution with minimal period
T > 0 such that x(t+ T ) = x(t) for all t ∈ R. Hint. Consider the integral∫ T

0
f(x)xt dt,

(b) Why doesn’t your argument in (a) apply to an ODE θt = f(θ) on the circle T?

Solution

• (a) Suppose that there is a periodic solution to the ODE xt = f(x) satisfying
x(t + T ) = x(t) for some T > 0 and all t ∈ R. Using fundamental theorem
of calculus, we find that∫ T

0
|xt(t)|2dt =

∫ T

0
f(x)xt(t)dt =

∫ x(T )

x(0)
f(s)ds = 0. (2)

• However, notice that |xt|2 is a nonnegative continuous function on [0, T ]. By
above equality, we conlcude that xt(t) ≡ 0 on [0, T ], which is saying that x
must be a constant solution.

• (b) When the problem is posed on T and we use R as a covering space of T
to describe the system, we are allowing solutions to have 2π-jumps within
one period. As a consequence, the last equality of (2) could be nonzero.



5. (a) A Bernoulli equation is an ODE of the form

xt = a(t)x+ b(t)xn

where a, b are continuous functions and n 6= 1. Show that the transformation

u =
1

xn−1

reduces a Bernoulli equation to a linear equation for u. Use this transformation
to solve the logistic equation xt = x(1− x).

(b) A Riccati equation is an ODE of the form

xt = a(t) + b(t)x+ c(t)x2.

where a, b, c are continuous functions, with c 6= 0. Show that the transformation

x = −ut
cu

reduces the Riccati equation to a second order, linear equation for u. Use this
transformation to solve the logistic equation xt = x(1− x).

Solution

• (a) If u = 1/xn−1, we deduce that ut = (1 − n)xt/x
n. Then the Bernoulli

equation can be rewritten in terms of u as

ut = (1− n) [a(t)u+ b(t)] ,

which is a linear equation for u.

• The logistic equation xt = x(1−x) is a special case of the Bernoulli equation
with a(t) = 1, b(t) = −1, and n = 2. Using the transformation u = 1/x, we
find that the equation is reduced to

ut = −u+ 1.

• We solve this ODE by separation of variables with initial condition u(0) =
1/x0,

u(t) =

(
1

x0
− 1

)
e−t + 1.

Then the solution to the logistic equation is

x(t) =
x0

(1− x0)e−t + x0
.



• (b) If x = −ut/(cu), then we find that

−cuutt − cu
2
t − ctuut

(cu)2
= xt = a(t) + b(t)x+ c(t)x2 = a− but

cu
+

u2t
cu2

.

Simplifying this equation yields

utt −
(
b+

ct
c

)
ut + acu = 0.

• The logistic equation xt = x(1− x) is a special case of the Ricatti equation
with a(t) = 0, b(t) = 1, and c(t) = −1. Using the transformation x = ut/u,
we find that the equation is reduced to

utt − ut = 0.

• Solving this equation yields

u(t) = c1e
t + c2.

where c1 and c2 are constants. Notice that x = d
dt log |u|. We obtain

x(t) =
c1

c1 + c2e−t
.

Assuming x(0) = x0 gives the solution

x(t) =
x0

(1− x0)e−t + x0
.


