Problem set 3: Solutions

Math 207A, Fall 2018

1. A model for a population $x(t) \geq 0$ with logistic growth and a constant rate of harvesting is

$$
x_{t}=\mu x\left(1-\frac{x}{K}\right)-H
$$

where the parameters μ, K, H are positive constants.
(a) Show that a nondimensionalized form of the equation is

$$
\begin{equation*}
x_{t}=x(1-x)-h, \tag{1}
\end{equation*}
$$

and express the dimensionless parameter h as a ratio of two times.
(b) Sketch a graph of the equilibria as functions of h, and sketch the phase line of (1) for various values of $h>0$. Determine the stability of the equilibria, both from the phase line and from their linearized stability. For what values of the initial (nondimensionalized) population $x_{0}>0$ and harvesting rate $h>0$ does the population become extinct?

Solution

- (a) Let P denote a unit of population and T denote a unit of time, then the parameters have dimensions

$$
[\mu]=\frac{1}{T}, \quad[K]=P, \quad[H]=\frac{P}{T}
$$

- Define dimensionless variables based on logistic growth parameters,

$$
\tilde{x}=\frac{x}{K}, \quad \tilde{t}=\mu t .
$$

Then

$$
\tilde{x}_{\tilde{t}}=\tilde{x}(1-\tilde{x})-\frac{H}{\mu K} .
$$

Dropping tildes and letting $h=(1 / \mu) /(K / H)$ yield (1).

- (b) To find equilibria, we solve the equation

$$
f(x):=x(1-x)-h=0,
$$

which gives

$$
x_{ \pm}=\frac{1 \pm \sqrt{1-4 h}}{2}
$$

- The linearized equations of the nondimensionalized ODE around the equilibria (if exist) are

$$
x_{t}=\left(1-2 x_{ \pm}\right) x .
$$

- When $0<h<1 / 4$, the equation admits two real solutions, the phase line (blue) and stability of equilibria can be determined based on the sign of $f(x) . x_{-}$is an unstable equilibrium, and x_{+}is an asymptotically stable equilibrium. The two equilibria are hyperbolic, and the linearized stability agree with the nonlinear stability.

- When $h=1 / 4$, the equation $f(x)=0$ has two repeated solutions $x_{ \pm}=1 / 2$. The phase line (blue) is plotted as follows. The only equilibrium $x_{ \pm}$is semistable (unstable). The linearized equation in this case is $x_{t}=0$, and the equilibrium is linearly stable.

- When $h>1 / 4$, the equation $f(x)=0$ admits no real solution. Therefore, there is no equilibrium point. The phase line is plotted as follows.

- In summary, if we use solid line to keep track of the stable nodes, and dashed line to keep track of the unstable nodes, a graph of equilibria as functions of h is

- It follows from the stability of equilibria that the population becomes extinct if $h>1 / 4$, or $h<1 / 4$ and $x_{0}<x_{-}$.

2. The graph $y=f(x)$ of a Lipschitz function $f: \mathbb{R} \rightarrow \mathbb{R}$ is shown below. The function f has zeros only at certain integer values of x and is never zero outside the x-interval shown.
(a) Sketch the phase line for the ODE $x_{t}=f(x)$ and state the stability of the equilibria. Which of the equilibria are hyperbolic?
(b) Sketch the graph of the solution of the initial value problem with $x(0)=0$.
(c) Sketch the graph of a potential $E(x)$ such that $f(x)=-E^{\prime}(x)$.

Solution

- (a) Based on the graph of f, the phase line for the ODE is

- We read from above graph that the equilibria 2 is asymptotically stable, -3 and 4 are unstable, and -1 is semi-stable (also unstable). Only -3 and 2 are hyperbolic as the derivatives of f there are nonzero.
- (b) A qualitative sketch of the solution with $x(0)=0$ is

- (c) A sketch of the graph of potential $E(x)$ is as follows. A vertical translation of the graph is allowed, based on the choice of the base of the potential.

3. A spherical raindrop with volume $V(t)$ and surface area $A(t)$ evaporates at a rate proportional to its surface area, meaning that $V_{t}=-k A$ for some constant $k>0$. Write down an ODE for V and show that the raindrop evaporates completely in finite time. Find an expression for the evaporation time T in terms of k and the initial volume V_{0} of the drop, and verify that your result is dimensionally consistent. Why doesn't this result violate the uniqueness part of the Picard theorem?

Solution

- By the formula of surface area of 2-sphere and volume of 3-unit ball, we have the following equation

$$
A=(36 \pi)^{\frac{1}{3}} V^{\frac{2}{3}} .
$$

- The ODE for V is then

$$
V_{t}=-K V^{\frac{2}{3}},
$$

where $K=(36 \pi)^{\frac{1}{3}} k>0$ is a constant.

- It is obvious that $V=0$ is an equilibrium.
- Solving the Cauchy problem for the model with initial value $V(0)=V_{0}>0$ by separating variables yields

$$
V(t)= \begin{cases}\left(\sqrt[3]{V_{0}}-\frac{K}{3} t\right)^{3} & \text { if } t \leq \frac{3 \sqrt[3]{V_{0}}}{K} \\ 0 & \text { if } t>\frac{3 \sqrt[3]{V_{0}}}{K}\end{cases}
$$

- The evaporation time $T=\frac{3 \sqrt[3]{V_{0}}}{K}$. Let L denote a unit of length, and \tilde{T} denote a unit of time, then

$$
[K]=[k]=\frac{[V]}{[T] \cdot[A]}=\frac{L}{\tilde{T}}, \quad\left[\frac{V^{\frac{1}{3}}}{K}\right]=\tilde{T}=[T],
$$

which shows consistency.

- This result does not violate the uniqueness part of the the Picard theorem, as the $V^{\frac{2}{3}}$ is not Lipschitz continuous at $V=0$.

4. (a) Consider a scalar ODE $x_{t}=f(x)$ where $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Prove that the ODE cannot have a non-constant periodic solution with minimal period $T>0$ such that $x(t+T)=x(t)$ for all $t \in \mathbb{R}$. Hint. Consider the integral

$$
\int_{0}^{T} f(x) x_{t} d t
$$

(b) Why doesn't your argument in (a) apply to an ODE $\theta_{t}=f(\theta)$ on the circle \mathbb{T} ?

Solution

- (a) Suppose that there is a periodic solution to the ODE $x_{t}=f(x)$ satisfying $x(t+T)=x(t)$ for some $T>0$ and all $t \in \mathbb{R}$. Using fundamental theorem of calculus, we find that

$$
\begin{equation*}
\int_{0}^{T}\left|x_{t}(t)\right|^{2} d t=\int_{0}^{T} f(x) x_{t}(t) d t=\int_{x(0)}^{x(T)} f(s) d s=0 \tag{2}
\end{equation*}
$$

- However, notice that $\left|x_{t}\right|^{2}$ is a nonnegative continuous function on $[0, T]$. By above equality, we conlcude that $x_{t}(t) \equiv 0$ on $[0, T]$, which is saying that x must be a constant solution.
- (b) When the problem is posed on \mathbb{T} and we use \mathbb{R} as a covering space of \mathbb{T} to describe the system, we are allowing solutions to have 2π-jumps within one period. As a consequence, the last equality of (2) could be nonzero.

5. (a) A Bernoulli equation is an ODE of the form

$$
x_{t}=a(t) x+b(t) x^{n}
$$

where a, b are continuous functions and $n \neq 1$. Show that the transformation

$$
u=\frac{1}{x^{n-1}}
$$

reduces a Bernoulli equation to a linear equation for u. Use this transformation to solve the logistic equation $x_{t}=x(1-x)$.
(b) A Riccati equation is an ODE of the form

$$
x_{t}=a(t)+b(t) x+c(t) x^{2} .
$$

where a, b, c are continuous functions, with $c \neq 0$. Show that the transformation

$$
x=-\frac{u_{t}}{c u}
$$

reduces the Riccati equation to a second order, linear equation for u. Use this transformation to solve the logistic equation $x_{t}=x(1-x)$.

Solution

- (a) If $u=1 / x^{n-1}$, we deduce that $u_{t}=(1-n) x_{t} / x^{n}$. Then the Bernoulli equation can be rewritten in terms of u as

$$
u_{t}=(1-n)[a(t) u+b(t)],
$$

which is a linear equation for u.

- The logistic equation $x_{t}=x(1-x)$ is a special case of the Bernoulli equation with $a(t)=1, b(t)=-1$, and $n=2$. Using the transformation $u=1 / x$, we find that the equation is reduced to

$$
u_{t}=-u+1 .
$$

- We solve this ODE by separation of variables with initial condition $u(0)=$ $1 / x_{0}$,

$$
u(t)=\left(\frac{1}{x_{0}}-1\right) e^{-t}+1
$$

Then the solution to the logistic equation is

$$
x(t)=\frac{x_{0}}{\left(1-x_{0}\right) e^{-t}+x_{0}} .
$$

- (b) If $x=-u_{t} /(c u)$, then we find that

$$
-\frac{c u u_{t t}-c u_{t}^{2}-c_{t} u u_{t}}{(c u)^{2}}=x_{t}=a(t)+b(t) x+c(t) x^{2}=a-\frac{b u_{t}}{c u}+\frac{u_{t}^{2}}{c u^{2}} .
$$

Simplifying this equation yields

$$
u_{t t}-\left(b+\frac{c_{t}}{c}\right) u_{t}+a c u=0 .
$$

- The logistic equation $x_{t}=x(1-x)$ is a special case of the Ricatti equation with $a(t)=0, b(t)=1$, and $c(t)=-1$. Using the transformation $x=u_{t} / u$, we find that the equation is reduced to

$$
u_{t t}-u_{t}=0 .
$$

- Solving this equation yields

$$
u(t)=c_{1} e^{t}+c_{2} .
$$

where c_{1} and c_{2} are constants. Notice that $x=\frac{d}{d t} \log |u|$. We obtain

$$
x(t)=\frac{c_{1}}{c_{1}+c_{2} e^{-t}} .
$$

Assuming $x(0)=x_{0}$ gives the solution

$$
x(t)=\frac{x_{0}}{\left(1-x_{0}\right) e^{-t}+x_{0}} .
$$

