## Problem Set 4

Math 207A, Fall 2018
Due: Fri., Oct. 26

1. The ODE for a linear oscillator with displacement $x(t)$ is

$$
\ddot{x}+\delta \dot{x}+\omega^{2} x=0
$$

where the damping coefficient $\delta \geq 0$ and the frequency $\omega>0$ are constants. Write this ODE as a $2 \times 2$ first order linear system for $(x, y)$ with $y=\dot{x}$. Sketch the phase plane for the following cases: (a) $\delta=0$ (undamped); (b) $0<\delta<2 \omega$ (underdamped); (c) $\delta=2 \omega$ (critically damped); (d) $\delta>2 \omega$ (overdamped). Classify the equilibrium $(x, y)=(0,0)$ in each case. In which cases is the equilibrium hyperbolic?
2. (a) An $n \times n$ matrix $N$ is said to be nilpotent if $N^{k}=0$ for some $k \in \mathbb{N}$. Compute $e^{t A}$ if $A=\lambda I+N$ where $N$ is nilpotent. Justify all your steps.
(b) Compute $e^{t A}$ if $A$ is the $3 \times 3$ Jordan block

$$
A=\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)
$$

(c) Consider the $3 \times 3$ linear system $x_{t}=A x$ where $A$ is the matrix in (b) and $\lambda \in \mathbb{R}$. Describe the stable, unstable, and center subspaces and the stability of $x=0$ in the cases (i) $\lambda<0$; (ii) $\lambda=0$; (iii) $\lambda>0$.
3. Suppose that $A: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ is a continuous, simultaneously diagonalizable, matrix valued function, meaning that there exists a constant matrix $P$ and a diagonal matrix valued function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ with

$$
\Lambda(t)=\operatorname{diag}\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right)
$$

such that $A(t)=P \Lambda(t) P^{-1}$.
(a) Show that $A(s)$ and $A(t)$ commute for any $s, t \in \mathbb{R}$.
(b) Show that the solution of the initial value problem

$$
x_{t}=A(t) x, \quad x(0)=x_{0}
$$

is given by

$$
x(t)=e^{\int_{0}^{t} A(s) d s} x_{0}
$$

4. Let

$$
A(t)=\left(\begin{array}{cc}
1 & 2 t \\
0 & -1
\end{array}\right)
$$

(a) Compute the fundamental matrix $\Phi(t ; 0)$ that satisfies

$$
\Phi_{t}=A(t) \Phi, \quad \Phi(0 ; 0)=I
$$

(b) Compute

$$
E(t)=e^{\int_{0}^{t} A(s) d s}
$$

and show that $E(t) \neq \Phi(t ; 0)$. Why doesn't the result of Problem 3 apply here?
5. Consider the Lorenz equations

$$
\begin{aligned}
& x_{t}=\sigma(y-x), \\
& y_{t}=r x-y-x z, \\
& z_{t}=x y-\beta z
\end{aligned}
$$

where $r, \beta, \sigma>0$ are positive parameters. Determine the linearized stability of the equilibrium solution $(x, y, z)=(0,0,0)$. When is this equilibrium hyperbolic?

