Problem set 4: Solutions

Math 207A, Fall 2018

1. The ODE for a linear oscillator with displacement $x(t)$ is

$$
\ddot{x}+\delta \dot{x}+\omega^{2} x=0
$$

where the damping coefficient $\delta \geq 0$ and the frequency $\omega>0$ are constants. Write this ODE as a 2×2 first order linear system for (x, y) with $y=\dot{x}$. Sketch the phase plane for the following cases: (a) $\delta=0$ (undamped); (b) $0<\delta<2 \omega$ (underdamped); (c) $\delta=2 \omega$ (critically damped); (d) $\delta>2 \omega$ (overdamped). Classify the equilibrium $(x, y)=(0,0)$ in each case. In which cases is the equilibrium hyperbolic?

Solution

- By letting $y=\dot{x}$, the ODE can be written as

$$
\left\{\begin{array}{l}
\dot{x}=y, \\
\dot{y}=-\omega^{2} x-\delta y, \quad \text { or } \quad \frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2} & -\delta
\end{array}\right)\binom{x}{y} . . ~ . ~ . ~
\end{array}\right.
$$

The only equilibrium of the system is $(x, y)=(0,0)$.

- The eigenvalues of the coefficient matrix are

$$
\lambda_{ \pm}=\frac{-\delta \pm \sqrt{\delta^{2}-4 \omega^{2}}}{2}
$$

- (a) When the system is undamped $(\delta=0)$, we have $\lambda= \pm i \omega$, and the trajectories are limit cycles around a stable (but not asymptotically stable) center. The equilibrium is non-hyperbolic.
- (b) When the system is underdamped $(0<\delta<2 \omega)$, we have $\Re \lambda_{ \pm}<$ 0 . It follows that the equilibrium is asymptotically stable, and the trajectories are spirals. The equilibrium is hyperbolic.
- (c) When the system is critically damped $(\delta=2 \omega)$, we have $\lambda_{ \pm}=$ $-\delta / 2$, and therefore, the equilibrium is asymptotically stable. The equilibrium is hyperbolic.
- (d) When the system is overdamped $(\delta>2 \omega)$, we have $\lambda_{ \pm}<0$, and thus, the equilibrium is a stable node. The equilibrium is hyperbolic.
- The phase portraits are as follows

2. (a) An $n \times n$ matrix N is said to be nilpotent if $N^{k}=0$ for some $k \in \mathbb{N}$. Compute $e^{t A}$ if $A=\lambda I+N$ where N is nilpotent. Justify all your steps.
(b) Compute $e^{t A}$ if A is the 3×3 Jordan block

$$
A=\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)
$$

(c) Consider the 3×3 linear system $x_{t}=A x$ where A is the matrix in (b) and $\lambda \in \mathbb{R}$. Describe the stable, unstable, and center subspaces and the stability of $x=0$ in the cases (i) $\lambda<0$; (ii) $\lambda=0$; (iii) $\lambda>0$.

Solution

- (a) Since identity matrix I commutes with any matrix, and also that $N^{k}=0$, we can write

$$
e^{t A}=e^{t \lambda I+t N}=e^{t \lambda} e^{t N}=e^{t \lambda} \sum_{j=0}^{\infty} \frac{t^{j} N^{j}}{j!}=e^{t \lambda} \sum_{j=0}^{k-1} \frac{t^{j} N^{j}}{j!}
$$

- (b) We can write $A=\lambda I+N$, where

$$
N=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad N^{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) . \quad N^{k}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad k \geq 3
$$

By part (a), we find that

$$
e^{t A}=e^{t \lambda}\left(\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)
$$

- (c) Eigenvalues of A are λ with multiplicity 3. Eigenvector corresponding to λ is span $\{(1,0,0)\}$. However, the generalized eigenvectors corresponding λ span the whole space \mathbb{R}^{3}. If follows that the when (i) $\lambda<0$, $E^{s}=\mathbb{R}^{3}$, and $E^{c}=E^{u}=\{0\} ;$ (i) $\lambda=0, E^{c}=\mathbb{R}^{3}$, and $E^{s}=E^{u}=\{0\}$; (iii) $\lambda>0, E^{u}=\mathbb{R}^{3}$, and $E^{s}=E^{c}=\{0\}$.

3. Suppose that $A: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ is a continuous, simultaneously diagonalizable, matrix valued function, meaning that there exists a constant matrix P and a diagonal matrix valued function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ with

$$
\Lambda(t)=\operatorname{diag}\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right)
$$

such that $A(t)=P \Lambda(t) P^{-1}$.
(a) Show that $A(s)$ and $A(t)$ commute for any $s, t \in \mathbb{R}$.
(b) Show that the solution of the initial value problem

$$
x_{t}=A(t) x, \quad x(0)=x_{0}
$$

is given by

$$
x(t)=e^{\int_{0}^{t} A(s) d s} x_{0}
$$

Solution

- (a) Since diagonal matrices commute, direct calculation shows that for any $s, t \in \mathbb{R}$

$$
A(s) A(t)=P \Lambda(s) P^{-1} P \Lambda(t) P^{-1}=P \Lambda(t) P^{-1} P \Lambda(s) P^{-1}=A(t) A(s)
$$

- (b) Since

$$
\int_{0}^{t} A(s) d s=P \int_{0}^{t} \Lambda(s) d s P^{-1}
$$

it follows that for any $j \in \mathbb{N}$

$$
\left(\int_{0}^{t} A(s) d s\right)^{j}=P\left(\int_{0}^{t} \Lambda(s) d s\right)^{j} P^{-1} .
$$

- Therefore, by definition of matrix exponential

$$
e^{\int_{0}^{t} A(s) d s}=\sum_{j=0}^{\infty} \frac{1}{j!} P\left(\int_{0}^{t} \Lambda(s) d s\right)^{j} P^{-1}
$$

Using fundamental theorem of calculus, we obtain

$$
\begin{aligned}
\frac{d}{d t} e^{\int_{0}^{t} A(s) d s} x_{0} & =\sum_{j=1}^{\infty} \frac{1}{(j-1)!} P \Lambda(t) P^{-1} P\left(\int_{0}^{t} \Lambda(s) d s\right)^{j-1} P^{-1} x_{0} \\
& =A(t) \sum_{j=0}^{\infty} \frac{1}{j!} P \Lambda(t) P^{-1} P\left(\int_{0}^{t} \Lambda(s) d s\right)^{j} P^{-1} x_{0} \\
& =A(t) e^{\int_{0}^{t} A(s) d s} x_{0} .
\end{aligned}
$$

4. Let

$$
A(t)=\left(\begin{array}{cc}
1 & 2 t \\
0 & -1
\end{array}\right)
$$

(a) Compute the fundamental matrix $\Phi(t ; 0)$ that satisfies

$$
\Phi_{t}=A(t) \Phi, \quad \Phi(0 ; 0)=I
$$

(b) Compute

$$
E(t)=e^{\int_{0}^{t} A(s) d s}
$$

and show that $E(t) \neq \Phi(t ; 0)$. Why doesn't the result of Problem 3 apply here?

Solution

- (a) The second equation of the system is essentially decoupled. The solution of $\dot{y}=-y$ with initial condition $y(0)=1$ is $y(t)=e^{-t}$, where with initial condition $y(0)=0$ is $y(t)=0$.
- Considering the first equation of the system with, respectively, initial condition $x(0)=1$ and $x(0)=0$

$$
\left\{\begin{array} { l }
{ \dot { x } = x , } \\
{ x (0) = 1 , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\dot{x}=x+2 t e^{-t} \\
x(0)=0
\end{array}\right.\right.
$$

we find that the fundamental matrix of the system is

$$
\Phi(t ; 0)=\left(\begin{array}{cc}
e^{t} & -t e^{-t}+\sinh t \\
0 & e^{-t}
\end{array}\right)
$$

- By induction, it is easy to see that

$$
\left(\int_{0}^{t} A(s) d s\right)^{j}=\left(\begin{array}{ll}
t & t^{2} \\
0 & -t
\end{array}\right)^{j}= \begin{cases}t^{j} I & \text { if } j \text { is even } \\
t^{j-1} A(t) & \text { if } j \text { is odd }\end{cases}
$$

Then it follows from definition of matrix exponential that

$$
E(t)=\left(\begin{array}{cc}
e^{t} & t \sinh t \\
0 & e^{-t}
\end{array}\right) \neq \Phi(t ; 0)
$$

- The result of Problem 3 does not apply here because the eigenvectors of the matrix $A(t)$ depends on t, and thus, $A(t)$ and $A(s)$ do not commute for general $s, t \in \mathbb{R}$.

5. Consider the Lorenz equations

$$
\begin{aligned}
x_{t} & =\sigma(y-x), \\
y_{t} & =r x-y-x z, \\
z_{t} & =x y-\beta z
\end{aligned}
$$

where $r, \beta, \sigma>0$ are positive parameters. Determine the linearized stability of the equilibrium solution $(x, y, z)=(0,0,0)$. When is this equilibrium hyperbolic?

Solution

- The linearized system is

$$
\begin{aligned}
x_{t} & =\sigma(y-x), \\
y_{t} & =r x-y, \\
z_{t} & =-\beta z .
\end{aligned}
$$

- To determine linearized stability, we first solve for eigenvalues of the coefficient matrix

$$
\left(\begin{array}{ccc}
-\sigma & \sigma & 0 \\
r & -1 & 0 \\
0 & 0 & -\beta
\end{array}\right)
$$

which are

$$
\lambda_{1}=-\beta, \quad \lambda_{2,3}=\frac{-(\sigma+1) \pm \sqrt{(\sigma+1)^{2}-4 \sigma(1-r)}}{2}
$$

It is clear that $(\sigma+1)^{2}-4 \sigma(1-r)>0$ for all $r, \sigma>0$, so that all the eigenvalues are real-valued.

- When $0<r<1$, we have $\lambda_{1,2,3}<0$. Therefore, the equilibrium is linearized stable. Moreover, it is hyperbolic, which implies that the nonlinear system is asymptotically stable at this equilibrium.
- When $r=1$, we have $\lambda_{1,3}<0$, while $\lambda_{2}=0$. The linearized system is still linearized stable, but since the equilibrium is non-hyperbolic, we cannot say anything about the nonlinear stability.
- When $r>1$, we have $\lambda_{1,3}<0$ and $\lambda_{2}>0$. Then the system is linearly unstable. Since the equilibrium is hyperbolic, we conclude that the nonlinear system is also unstable in this circumstance.

