PROBLEM SET 4: Solutions
Math 207A, Fall 2018

1. The ODE for a linear oscillator with displacement x(t) is
¥4 0 4+ w?x = 0,

where the damping coefficient 6 > 0 and the frequency w > 0 are constants.
Write this ODE as a 2 x 2 first order linear system for (z,y) with y = 4.
Sketch the phase plane for the following cases: (a) § = 0 (undamped); (b)
0 < ¢ < 2w (underdamped); (c) § = 2w (critically damped); (d) 6 > 2w
(overdamped). Classify the equilibrium (z,y) = (0,0) in each case. In which
cases is the equilibrium hyperbolic?

Solution

e By letting y = &, the ODE can be written as

T =y, dfx\ _ (0 1 x
y = —wlr — vy, or dt \y) \—w? —6)\y)"

The only equilibrium of the system is (z,y) = (0,0).
e The eigenvalues of the coefficient matrix are

= Vo2 — 4w?
- 5 )

e (a) When the system is undamped (6 = 0), we have A = +iw, and the
trajectories are limit cycles around a stable (but not asymptotically
stable) center. The equilibrium is non-hyperbolic.

At

e (b) When the system is underdamped (0 < § < 2w), we have RA\L <
0. It follows that the equilibrium is asymptotically stable, and the
trajectories are spirals. The equilibrium is hyperbolic.

e (c) When the system is critically damped (0 = 2w), we have Ay =
—0/2, and therefore, the equilibrium is asymptotically stable. The
equilibrium is hyperbolic.

e (d) When the system is overdamped (6 > 2w), we have AL < 0, and
thus, the equilibrium is a stable node. The equilibrium is hyperbolic.

e The phase portraits are as follows
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2. (a) An n x n matrix N is said to be nilpotent if N* = 0 for some k € N.
Compute et if A = X\ + N where N is nilpotent. Justify all your steps.

(b) Compute e if A is the 3 x 3 Jordan block

A:

S O >
S > =
> = O

(c) Consider the 3 x 3 linear system x; = Ax where A is the matrix in (b) and
A € R. Describe the stable, unstable, and center subspaces and the stability
of x =0 in the cases (i) A < 0; (ii) A = 0; (iii) A > 0.

Solution

e (a) Since identity matrix / commutes with any matrix, and also that
N* =0, we can write

tJNJ tI N7
tA __ t/\l+tN t)\ tN t/\ t)\
e SO S
7=0
e (b) We can write A = A + N, where
010 0 01 0 00
N=|oo 1], N=[oo0oo0]. N=[000], k>3
000 000 000
By part (a), we find that
2
Lot £
et=er0o 1 ¢
0 0 1

e (c) Eigenvalues of A are A with multiplicity 3. Eigenvector correspond-
ing to A is span {(1,0,0)}. However, the generalized eigenvectors corre-
sponding )\ span the whole space R3. If follows that the when (i) A < 0,
FE*=R3 and E° = E* = {0}; (i) A =0, £ =R3 and E* = E* = {0};
(ili) A > 0, B* = R?, and E* = E¢ = {0}.



3. Suppose that A : R — R™ ™ is a continuous, simultaneously diagonaliz-
able, matrix valued function, meaning that there exists a constant matrix P
and a diagonal matrix valued function A : R — R™*" with

A(t) = diag (A (1), ..., A\ (1))
such that A(t) = PA(t)P~L.
(a) Show that A(s) and A(t) commute for any s,t € R.
(b) Show that the solution of the initial value problem

= A(t)x, z(0) = xg
is given by
x(t) = elo A dsg
Solution

e (a) Since diagonal matrices commute, direct calculation shows that for
any s,t € R

A(s)A(t) = PA(s)PT*PA(t)P~! = PA(t)P ' PA(s)P™' = A(t)A(s).
e (b) Since t
/ A(s)dSZP/ A(s)dsP™,

it follows that for any j € N

(/ tA(s)ds>j (| tA(s)ds)jPl.

e Therefore, by definition of matrix exponential

e e}

. 1 t J
elo Als)ds Z 7P</ A(s)ds) P
J: 0

j=0
Using fundamental theorem of calculus, we obtain

d > 1 ¢ i1
2 oo Als)ds — PA P—lp / A P_1
i T jEZl G=1) (1) i (s)ds Zo

e e}

— A SPAGPP ( /O t A(s)ds)jPlxo

Jj=0 J:

= A(t)efot Als)ds g,



4. Let

A(t):(é Eﬁ)

(a) Compute the fundamental matrix ®(¢;0) that satisfies
o, = A(t)P, $(0;0) = 1.
(b) Compute
B(t) = efg A(s) ds
and show that E(t) # ®(¢;0). Why doesn’t the result of Problem 3 apply
here?

Solution

e (a) The second equation of the system is essentially decoupled. The
solution of § = —y with initial condition y(0) =1 is y(t) = e~*, where
with initial condition y(0) = 0 is y(t) = 0.

e Considering the first equation of the system with, respectively, initial
condition x(0) =1 and z(0) =0

T=u, and T =x+ 2e”t,
z(0) =1, z(0) =0,
we find that the fundamental matrix of the system is

et —te ! +sinht
d(t;0) = <0 ot ) :

e By induction, it is easy to see that

t J +o2\’ 1 if j is even,
/ A(s)ds | = =9 .1 e
0 0 —t T A(t) if j is odd.

Then it follows from definition of matrix exponential that

t .
B0 = ") £ oo
0 e
e The result of Problem 3 does not apply here because the eigenvectors of
the matrix A(t) depends on ¢, and thus, A(t) and A(s) do not commute
for general s,t € R.



5. Consider the Lorenz equations
x=o0(y —x),
Y =10 —Y — Tz,
z=xy — Pz

where r, 3,0 > 0 are positive parameters. Determine the linearized stability
of the equilibrium solution (z,y,z) = (0,0,0). When is this equilibrium
hyperbolic?

Solution
e The linearized system is
xy =0y — x),
Y =rr —y,
2 = —fz.

e To determine linearized stability, we first solve for eigenvalues of the
coefficient matrix

-0 O 0
r —1 0
0 0 —p

which are

— 2 _ —r
) Aoy — (a+1)j:\/(a2+1) 4o (1 )'

It is clear that (o + 1) — 40 (1 —r) > 0 for all r,o > 0, so that all the
eigenvalues are real-valued.

e When 0 < r < 1, we have A3 < 0. Therefore, the equilibrium is
linearized stable. Moreover, it is hyperbolic, which implies that the
nonlinear system is asymptotically stable at this equilibrium.

e When r = 1, we have A\ 3 < 0, while Ay = 0. The linearized system is
still linearized stable, but since the equilibrium is non-hyperbolic, we
cannot say anything about the nonlinear stability.

e When r > 1, we have \; 3 < 0 and Ay > 0. Then the system is linearly
unstable. Since the equilibrium is hyperbolic, we conclude that the
nonlinear system is also unstable in this circumstance.



