Problem set 5: Solutions

Math 207A, Fall 2018

1. A simple model for the potential energy of two uncharged molecules a distance r apart, with strong repulsion at small distances and weak attraction at large distances, is the Lennard-Jones potential

$$
V(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
$$

where $\epsilon, \sigma>0$ are positive constants. Sketch the ($r, m \dot{r}$)-phase plane for the motion of a particle of mass m and position $r(t)>0$ in this potential. Sketch graphs of $r(t)$ versus t for various values of the energy of the particle.

Solution

- The evolutionary equation of the system is the following gradient system

$$
m \ddot{r}=-V^{\prime}(r)=24 \epsilon\left(\frac{2 \sigma^{12}}{r^{13}}-\frac{\sigma^{6}}{r^{7}}\right) .
$$

The only equilibrium for $r>0$ is $r=\sqrt[6]{2} \sigma$.

- We can plot the profile of $V(r)$ for $r>0$, and then based on the profile of $V(r)$, we sketch the $(r, m \dot{r})$-phase plane

- Some possible profiles of $r(t)$ versus t for different values of the energy of the particle are

(a) $E=-\epsilon$

(c) $E=0$

(b) $-\epsilon<E<0$

(d) $E>0$

2. The KPP or Fisher equation

$$
u_{t}=u_{x x}+u(1-u)
$$

is a PDE that describes the diffusion of a spatially distributed population with logistic growth. Traveling wave solutions $u=u(x-c t)$ satisfy the ODE

$$
u^{\prime \prime}+c u^{\prime}+u(1-u)=0
$$

Sketch the phase plane of this ODE for various values of the wave speed $c \geq 0$. For what values of c are there nonnegative, bounded traveling waves? Sketch the graph of $u(\xi)$ versus ξ for these values of c. What do these traveling waves describe?

Solution

- By letting $v=u^{\prime}$, we can rewrite the ODE as

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =-u(1-u)-c v
\end{aligned}
$$

The equilibria are $(u, v)=(0,0)$ and $(u, v)=(1,0)$.

- By linearizing the system around these two equilibria, we obtain

$$
\frac{d}{d t}\binom{u}{v}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -c
\end{array}\right)\binom{u}{v}, \quad \text { and } \quad \frac{d}{d t}\binom{u}{v}=\left(\begin{array}{cc}
0 & 1 \\
1 & -c
\end{array}\right)\binom{u}{v}
$$

We solve for eigenvalues of these coefficient matrices.

- At $(0,0)$, eigenvalues are $\lambda_{1,2}^{(1)}=-\frac{c}{2} \pm \sqrt{\frac{c^{2}}{4}-1}$.
- When $c=0, \lambda_{1,2}^{(1)}= \pm i$. This equilibrium is a center surrounded by closed periodic orbits.
- When $0<c<2, \Re \lambda_{1,2}^{(2)}<0$ and $\Im \lambda_{1,2}^{(2)} \neq 0$. This equilibrium is a stable spiral.
- When $c \geq 2, \lambda_{1,2}^{(2)}<0$. This equilibrium is a stable node.
- At $(1,0)$, eigenvalues are $\lambda_{1,2}^{(2)}=-\frac{c}{2} \pm \sqrt{\frac{c^{2}}{4}+1}$. It is clear that $\lambda_{1}^{(2)}>0$ and $\lambda_{2}^{(2)}<0$. Thus, this equilibrium is a saddle node.
- Phase portraits of this ODE for various values of the waves speed $c \geq 0$ are

- The only nonnegative, bounded traveling waves described in above phase planes are the heteroclinic orbits when $c \geq 2$. This orbit gives a solution $u(\xi)$ with profile

- These traveling waves describe the spread of a population from a fully populated region, where $u \rightarrow 1$ as $x \rightarrow-\infty$, into an unpopulated region, where $u \rightarrow 0$ as $x \rightarrow \infty$. Alternatively, in Fisher's original application, this solution describes the spread of a favorable gene from a population with the gene into a population without the gene.

3. Consider a linear system $x_{t}=A(t) x$ where the continuous matrix-valued function $A(t)=A(t+1)$ is 1-periodic, and $\Phi\left(t, t_{0}\right)$ is the fundamental matrix. Let $M=\Phi(1,0)$ be the monodromy matrix and $L=\log M$ its logarithm. Show that there exists a 1-periodic matrix $\Psi(t)=\Psi(t+1)$ such that

$$
\Phi(t, 0)=\Psi(t) e^{t L}
$$

Hint. You can assume that every nonsingular matrix M has a (possibly complex-valued) matrix logarithm $L=\log M$ such that $M=e^{L}$.

Solution

- Since $\Phi\left(t, t_{0}\right)$ is the fundamental matrix, and that $A(t+1)=A(t)$, it is clear that

$$
\frac{d}{d t} \Phi(t+1,1)=A(t+1) \Phi(t+1,1)=A(t) \Phi(t+1,1)
$$

Also notice that $\Phi(1,1)=I$, the identity matrix. Since also $\Phi(t, 0)$ satisfies

$$
\begin{aligned}
& \frac{d}{d t} \Phi(t, 0)=A(t) \Phi(t, 0) \\
& \Phi(0,0)=I
\end{aligned}
$$

then by Picard-Lindelof theorem, we have $\Phi(t+1,1)=\Phi(t, 0)$.

- Let $M=\Phi(1,0)$ be the monodromy matrix, which is clearly nonsingular, and thus, $L=\log M$ exists. We also denote $\Psi(t)=\Phi(t, 0) e^{-t L}$. It follows that

$$
\begin{aligned}
\Psi(t+1) & =\Phi(t+1,0) e^{-L} e^{-t L} \\
& =\Phi(t+1,1) \Phi(1,0) M^{-1} e^{-t L} \\
& =\Phi(t, 0) e^{-t L} \\
& =\Psi(t)
\end{aligned}
$$

which show that $\Psi(t)$ is a 1-periodic matrix.
4. Consider the nonlinear system

$$
x_{t}=-x+y+3 y^{2}, \quad y_{t}=y
$$

(a) Sketch the phase plane, and show that its flow map $\varphi_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
\varphi_{t}(x, y)=\left(x e^{-t}+y \sinh t+y^{2}\left(e^{2 t}-e^{-t}\right), y e^{t}\right)
$$

What are the stable and unstable manifolds of $(0,0)$?
(b) Linearize the system at the equilibrium $(x, y)=(0,0)$. Classify the equilibrium, sketch the phase plane of the linearized system, and show that its flow map $e^{t A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
e^{t A}=\left(\begin{array}{cc}
e^{-t} & \sinh t \\
0 & e^{t}
\end{array}\right)
$$

What are the stable and unstable subspaces?
(c) Show that the flow of the nonlinear system is mapped to the flow of the linearized system by $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where

$$
h(x, y)=\left(x-y^{2}, y\right) .
$$

Solution

- (a) The only equilibrium is $(x, y)=(0,0)$. The phase portrait of the system is as follows.

- The second equation $y_{t}=y$ is decoupled from the system. Solving this equation with initial condition $y(0)=y_{0}$ gives

$$
y(t)=y_{0} e^{t} .
$$

Substituting this into the first equation with initial condition $x(0)=x_{0}$, and by using integrating factors, we can find that the solution is

$$
x(t)=x_{0} e^{-t}+y_{0} \sinh t+y_{0}^{2}\left(e^{2 t}-e^{-t}\right),
$$

which show that $\varphi_{t}(x, y)$ defines the flow map.

- To find the stable manifold of $(0,0)$, notice that $\lim _{t \rightarrow \infty} e^{t}=\infty$, we must have $y=0$ by looking at the second component of the flow map. Since $\lim _{t \rightarrow \infty} e^{-t}=0, x$ can be any point on \mathbb{R}. Therefore, the stable manifold is

$$
W^{(s)}(0,0)=\{(x, 0) \mid x \in \mathbb{R}\} .
$$

- Similarly, to find unstable manifold, we must have the coefficients of e^{-t} add to zero. Therefore,

$$
W^{(u)}(0,0)=\left\{(x, y) \left\lvert\, x-\frac{y}{2}-y^{2}=0\right.\right\} .
$$

- (b) The linearized system is

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

Eigenvalues and corresponding eigenvectors are $\lambda_{1}=-1, r_{1}=(1,0)$ and $\lambda_{2}=1, r_{2}=(1,2)$. The phase portrait is as follows, which is qualitatively the same as the phase portrait of the nonlinear system (the equilibrium is hyperbolic).

- The stable subspace of $(0,0)$ is $E^{(s)}(0,0)=\operatorname{span}\{(1,0)\}$, while the unstable subspace is $E^{(u)}(0,0)=\operatorname{span}\{(1,2)\}$.
- (c) To show the topological conjugacy between the linear and the nonlinear system, it suffices to show

$$
h \circ \varphi_{t}=e^{t A} \circ h
$$

Indeed, direct computation shows that

$$
\begin{aligned}
h \circ \varphi_{t}(x, y) & =\binom{x e^{-t}+y \sinh t+y^{2} e^{2 t}-y^{2} e^{-t}-y^{2} e^{2 t}}{y e^{t}} \\
& =\binom{e^{-t}\left(x-y^{2}\right)+y \sinh t}{y e^{t}} \\
& =\left(\begin{array}{cc}
e^{-t} & \sinh t \\
0 & e^{t}
\end{array}\right)\binom{x-y^{2}}{y} \\
& =e^{t A} h(x, y)
\end{aligned}
$$

