PROBLEM SET 5: Solutions
Math 207A, Fall 2018

1. A simple model for the potential energy of two uncharged molecules a
distance r apart, with strong repulsion at small distances and weak attraction
at large distances, is the Lennard-Jones potential

vo-u[(©)- ()]

where €,0 > 0 are positive constants. Sketch the (r, m7r)-phase plane for the
motion of a particle of mass m and position r(¢) > 0 in this potential. Sketch
graphs of r(t) versus ¢ for various values of the energy of the particle.

Solution

e The evolutionary equation of the system is the following gradient sys-
tem 512 6
. o o
mit=—V'(r) = 246( Sre 7)

The only equilibrium for > 0 is 7 = ¥/20.

e We can plot the profile of V(r) for r > 0, and then based on the profile
of V(r), we sketch the (r, mr)-phase plane




e Some possible profiles of r(t) versus ¢ for different values of the energy
of the particle are

(c) E=0 (d) E>0



2. The KPP or Fisher equation
Up = Uge + u(l —u)

is a PDE that describes the diffusion of a spatially distributed population
with logistic growth. Traveling wave solutions u = u(x — ct) satisfy the ODE

u" +cu' +u(l —u) =0.

Sketch the phase plane of this ODE for various values of the wave speed ¢ > 0.
For what values of ¢ are there nonnegative, bounded traveling waves? Sketch
the graph of u(§) versus £ for these values of ¢. What do these traveling
waves describe?

Solution
e By letting v = u/, we can rewrite the ODE as
u =,
v = —u(l —u) — cv.
The equilibria are (u,v) = (0,0) and (u,v) = (1,0).

e By linearizing the system around these two equilibria, we obtain

$0-( )0 = 20-6 )0

We solve for eigenvalues of these coefficient matrices.

e At (0,0), eigenvalues are )\51% =—5x4/F -1

— When ¢ = 0, A§1§ = =+4. This equilibrium is a center surrounded
by closed periodic orbits.

— When 0 < ¢ < 2, 8?)\% < 0 and %)@ # 0. This equilibrium is a
stable spiral.

— When ¢ > 2, /\ﬁl < 0. This equilibrium is a stable node.

e At (1,0), eigenvalues are )\g = -S4,/ % + 1. It is clear that )\?) >0
and )\g) < 0. Thus, this equilibrium is a saddle node.



e Phase portraits of this ODE for various values of the waves speed ¢ > 0
are

1Y,

e The only nonnegative, bounded traveling waves described in above
phase planes are the heteroclinic orbits when ¢ > 2. This orbit gives a
solution u(§) with profile



e These traveling waves describe the spread of a population from a fully
populated region, where u — 1 as * — —oo, into an unpopulated
region, where u — 0 as x — oo. Alternatively, in Fisher’s original
application, this solution describes the spread of a favorable gene from
a population with the gene into a population without the gene.



3. Consider a linear system z; = A(t)x where the continuous matrix-valued
function A(t) = A(t+1) is 1-periodic, and ®(t, ) is the fundamental matrix.
Let M = ®(1,0) be the monodromy matrix and L = log M its logarithm.
Show that there exists a 1-periodic matrix () = (¢ + 1) such that

d(t,0) = W(t)e'r.

HINT. You can assume that every nonsingular matrix M has a (possibly
complex-valued) matrix logarithm L = log M such that M = e*.

Solution

e Since P(t,1y) is the fundamental matrix, and that A(t + 1) = A(?), it
is clear that

d

E(D(t +1, 1) =At+1D)P(t+1,1) = A(t)P(t + 1,1).

Also notice that ®(1,1) = I, the identity matrix. Since also ®(t,0)
satisfies

d
Z0(t,0) = A)0(,0).

o(0,0) = I,
then by Picard-Lindelof theorem, we have ®(t + 1,1) = ®(¢,0).

e Let M = ®(1,0) be the monodromy matrix, which is clearly nonsingu-
lar, and thus, L = log M exists. We also denote W(t) = ®(¢,0)e L. Tt
follows that

U(t+1) = @(t+1,0)e Fe "
=®(t+1,1)®(1,0)M Ltk
:(I)(t, ) —tL
= V()

which show that W(t) is a 1-periodic matrix.



4. Consider the nonlinear system
r=—r+y+3y°,  w=uy

(a) Sketch the phase plane, and show that its flow map ¢; : R? — R? is given
by

ei(z,y) = (ze " +ysinht +y*(e* — ™), ye') .
What are the stable and unstable manifolds of (0,0)?

(b) Linearize the system at the equilibrium (z,y) = (0,0). Classify the
equilibrium, sketch the phase plane of the linearized system, and show that
its flow map e*4 : R? — R? is given by

A _ e~! sinht
L0 el '

What are the stable and unstable subspaces?

(c) Show that the flow of the nonlinear system is mapped to the flow of the
linearized system by h : R? — R? where

hz,y) = (z — o y) -

Solution

e (a) The only equilibrium is (z,y) = (0,0). The phase portrait of the
system is as follows.




e The second equation y; = y is decoupled from the system. Solving this
equation with initial condition y(0) = yo gives

y(t) = yoe'.

Substituting this into the first equation with initial condition z(0) = zo,
and by using integrating factors, we can find that the solution is

x(t) = zoe " + yosinht + y2(e* —e),
which show that ¢;(x,y) defines the flow map.

e To find the stable manifold of (0,0), notice that lim; ,,, €' = oo, we
must have y = 0 by looking at the second component of the flow map.
Since lim;_,oc e* = 0, & can be any point on R. Therefore, the stable
manifold is

W (0,0) = {(x,0) | z € R}.

e Similarly, to find unstable manifold, we must have the coefficients of
e~ add to zero. Therefore,

W 0,0) = { @) v —§ —y* =0}

e (b) The linearized system is

d (x\ _ (-1 1\ (=

dt \y) \0 1)\y/)’
Eigenvalues and corresponding eigenvectors are A\; = —1, r = (1,0)
and Ay = 1, 7o = (1,2). The phase portrait is as follows, which is

qualitatively the same as the phase portrait of the nonlinear system
(the equilibrium is hyperbolic).



e The stable subspace of (0,0) is £()(0,0) = span{(1,0)}, while the
unstable subspace is E™(0,0) = span {(1,2)}.

e (c) To show the topological conjugacy between the linear and the non-
linear system, it suffices to show

hoy, =e?oh,

Indeed, direct computation shows that

xe t +ysinht + y2e? — y?et — y2e?
howi(z,y) = ( Y ’Zet Y Y

(e (z — y*) + ysinht
— et

(et sinht) [z —y?
~\ 0 et y

= e h(z,y).



