
Problem set 5: Solutions
Math 207A, Fall 2018

1. A simple model for the potential energy of two uncharged molecules a
distance r apart, with strong repulsion at small distances and weak attraction
at large distances, is the Lennard-Jones potential

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
,

where ε, σ > 0 are positive constants. Sketch the (r,mṙ)-phase plane for the
motion of a particle of mass m and position r(t) > 0 in this potential. Sketch
graphs of r(t) versus t for various values of the energy of the particle.

Solution

• The evolutionary equation of the system is the following gradient sys-
tem

mr̈ = −V ′(r) = 24ε

(
2σ12

r13
− σ6

r7

)
.

The only equilibrium for r > 0 is r = 6
√

2σ.

• We can plot the profile of V (r) for r > 0, and then based on the profile
of V (r), we sketch the (r,mṙ)-phase plane



• Some possible profiles of r(t) versus t for different values of the energy
of the particle are

(a) E = −ε (b) −ε < E < 0

(c) E = 0 (d) E > 0



2. The KPP or Fisher equation

ut = uxx + u(1− u)

is a PDE that describes the diffusion of a spatially distributed population
with logistic growth. Traveling wave solutions u = u(x− ct) satisfy the ODE

u′′ + cu′ + u(1− u) = 0.

Sketch the phase plane of this ODE for various values of the wave speed c ≥ 0.
For what values of c are there nonnegative, bounded traveling waves? Sketch
the graph of u(ξ) versus ξ for these values of c. What do these traveling
waves describe?

Solution

• By letting v = u′, we can rewrite the ODE as

u′ = v,

v′ = −u(1− u)− cv.

The equilibria are (u, v) = (0, 0) and (u, v) = (1, 0).

• By linearizing the system around these two equilibria, we obtain

d

dt

(
u
v

)
=

(
0 1
−1 −c

)(
u
v

)
, and

d

dt

(
u
v

)
=

(
0 1
1 −c

)(
u
v

)
.

We solve for eigenvalues of these coefficient matrices.

• At (0, 0), eigenvalues are λ
(1)
1,2 = − c

2
±
√

c2

4
− 1.

– When c = 0, λ
(1)
1,2 = ±i. This equilibrium is a center surrounded

by closed periodic orbits.

– When 0 < c < 2, <λ(2)1,2 < 0 and =λ(2)1,2 6= 0. This equilibrium is a
stable spiral.

– When c ≥ 2, λ
(2)
1,2 < 0. This equilibrium is a stable node.

• At (1, 0), eigenvalues are λ
(2)
1,2 = − c

2
±
√

c2

4
+ 1. It is clear that λ

(2)
1 > 0

and λ
(2)
2 < 0. Thus, this equilibrium is a saddle node.



• Phase portraits of this ODE for various values of the waves speed c ≥ 0
are

(a) c = 0 (b) 0 < c < 2

(c) c = 2 (d) 2 < c

• The only nonnegative, bounded traveling waves described in above
phase planes are the heteroclinic orbits when c ≥ 2. This orbit gives a
solution u(ξ) with profile



• These traveling waves describe the spread of a population from a fully
populated region, where u → 1 as x → −∞, into an unpopulated
region, where u → 0 as x → ∞. Alternatively, in Fisher’s original
application, this solution describes the spread of a favorable gene from
a population with the gene into a population without the gene.



3. Consider a linear system xt = A(t)x where the continuous matrix-valued
function A(t) = A(t+1) is 1-periodic, and Φ(t, t0) is the fundamental matrix.
Let M = Φ(1, 0) be the monodromy matrix and L = logM its logarithm.
Show that there exists a 1-periodic matrix Ψ(t) = Ψ(t+ 1) such that

Φ(t, 0) = Ψ(t)etL.

Hint. You can assume that every nonsingular matrix M has a (possibly
complex-valued) matrix logarithm L = logM such that M = eL.

Solution

• Since Φ(t, t0) is the fundamental matrix, and that A(t + 1) = A(t), it
is clear that

d

dt
Φ(t+ 1, 1) = A(t+ 1)Φ(t+ 1, 1) = A(t)Φ(t+ 1, 1).

Also notice that Φ(1, 1) = I, the identity matrix. Since also Φ(t, 0)
satisfies

d

dt
Φ(t, 0) = A(t)Φ(t, 0),

Φ(0, 0) = I,

then by Picard-Lindelof theorem, we have Φ(t+ 1, 1) = Φ(t, 0).

• Let M = Φ(1, 0) be the monodromy matrix, which is clearly nonsingu-
lar, and thus, L = logM exists. We also denote Ψ(t) = Φ(t, 0)e−tL. It
follows that

Ψ(t+ 1) = Φ(t+ 1, 0)e−Le−tL

= Φ(t+ 1, 1)Φ(1, 0)M−1e−tL

= Φ(t, 0)e−tL

= Ψ(t),

which show that Ψ(t) is a 1-periodic matrix.



4. Consider the nonlinear system

xt = −x+ y + 3y2, yt = y.

(a) Sketch the phase plane, and show that its flow map ϕt : R2 → R2 is given
by

ϕt(x, y) =
(
xe−t + y sinh t+ y2(e2t − e−t), yet

)
.

What are the stable and unstable manifolds of (0, 0)?

(b) Linearize the system at the equilibrium (x, y) = (0, 0). Classify the
equilibrium, sketch the phase plane of the linearized system, and show that
its flow map etA : R2 → R2 is given by

etA =

(
e−t sinh t
0 et

)
.

What are the stable and unstable subspaces?

(c) Show that the flow of the nonlinear system is mapped to the flow of the
linearized system by h : R2 → R2 where

h(x, y) =
(
x− y2, y

)
.

Solution

• (a) The only equilibrium is (x, y) = (0, 0). The phase portrait of the
system is as follows.



• The second equation yt = y is decoupled from the system. Solving this
equation with initial condition y(0) = y0 gives

y(t) = y0e
t.

Substituting this into the first equation with initial condition x(0) = x0,
and by using integrating factors, we can find that the solution is

x(t) = x0e
−t + y0 sinh t+ y20(e2t − e−t),

which show that ϕt(x, y) defines the flow map.

• To find the stable manifold of (0, 0), notice that limt→∞ e
t = ∞, we

must have y = 0 by looking at the second component of the flow map.
Since limt→∞ e

−t = 0, x can be any point on R. Therefore, the stable
manifold is

W (s)(0, 0) = {(x, 0) | x ∈ R} .

• Similarly, to find unstable manifold, we must have the coefficients of
e−t add to zero. Therefore,

W (u)(0, 0) =
{

(x, y) | x− y

2
− y2 = 0

}
.

• (b) The linearized system is

d

dt

(
x
y

)
=

(
−1 1
0 1

)(
x
y

)
.

Eigenvalues and corresponding eigenvectors are λ1 = −1, r1 = (1, 0)
and λ2 = 1, r2 = (1, 2). The phase portrait is as follows, which is
qualitatively the same as the phase portrait of the nonlinear system
(the equilibrium is hyperbolic).



• The stable subspace of (0, 0) is E(s)(0, 0) = span {(1, 0)}, while the
unstable subspace is E(u)(0, 0) = span {(1, 2)}.

• (c) To show the topological conjugacy between the linear and the non-
linear system, it suffices to show

h ◦ ϕt = etA ◦ h.

Indeed, direct computation shows that

h ◦ ϕt(x, y) =

(
xe−t + y sinh t+ y2e2t − y2e−t − y2e2t

yet

)
=

(
e−t(x− y2) + y sinh t

yet

)
=

(
e−t sinh t
0 et

)(
x− y2
y

)
= etAh(x, y).


