Problem set 6
Math 207A, Fall 2018
Due: Fri., Nov. 16

1. Plot the bifurcation diagram and representative phases lines for the scalar ODE

$$
x_{t}=\mu x+x^{3}-x^{5} .
$$

Identify the bifurcation points and classify them. How would the system behave if μ is increased quasi-statically from $-\infty$ to $+\infty$? When is the equilibrium $x=0$ linearly stable but unstable to sufficiently large perturbations?
2. Consider the scalar ODE

$$
x_{t}=\lambda+\mu x-x^{2},
$$

wheer $\lambda, \mu \in \mathbb{R}$ are parameters. Sketch the bifurcation diagram for the equilibria as a function of μ for fixed λ in the cases $\lambda<0, \lambda=0$, and $\lambda>0$. Identify the bifurcation points and classify them in each case.
3. Two rigid rods of length L are connected by a torsional spring with spring constant k and are subject to a compressive force of strength F. Explain why a reasonable model for the potential energy of the system is

$$
V(x)=\frac{1}{2} k x^{2}-2 F L(1-\cos x)
$$

where x is the angle of the rods to the horizontal. If the rod is strongly damped with damping constant $\beta>0$, then the ODE for its motion is $\beta x_{t}+V^{\prime}(x)=0$. Show that a nondimensionalized form of the ODE is

$$
x_{t}+x-\mu \sin x=0, \quad \mu=\frac{2 F L}{k}
$$

Sketch a bifurcation diagram for the ODE and classify the bifurcation that occurs.
4. Consider the system

$$
x_{t}=1-x-\beta x y, \quad y_{t}=\beta x y-(1+\gamma) y
$$

where $\beta, \gamma>0$ are positive parameters. Sketch the bifurcation diagram for the equilibria as a function of β and show that a bifurcation occurs at some $\beta=\beta_{*}(\gamma)$. What kind of bifurcation is it? Sketch typical phase planes on \mathbb{R}^{2} (using numerical solutions if you prefer) for β close to β_{*} when $\beta<\beta_{*}$, $\beta=\beta_{*}$, and $\beta>\beta_{*}$.

