PROBLEM SET 7 Math 207A, Fall 2018 Due: Fri., Nov. 30

1. The normal form for a Takens-Bogdanov bifurcation is the following 2×2 system depending on two parameters (μ, ν) :

$$\dot{x} = y, \qquad \dot{y} = \mu + \nu y + x^2 + xy.$$

(a) What is the algebraic structure of the linearized system at $(x, y; \mu, \nu) = (0, 0; 0, 0)$? Find the equilibria, classify them, and determine what bifurcations of equilibria occur as (μ, ν) vary over $(\mu, \nu) \neq (0, 0)$.

(b) Compare your results with the global phase portraits shown in Figure 8.14 of the text by Meiss.

2. (a) Consider a Hamiltonian system for $x, y \in \mathbb{R}^n$

$$\dot{x} = \frac{\partial H}{\partial y}, \qquad \dot{y} = -\frac{\partial H}{\partial x}$$

with Hamiltonian $H(x, y) \in \mathbb{R}$. Show that if λ is an eigenvalue of the linearization at an equilibrium, then so is $-\lambda$. What are the possible forms of the eigenvalues for a 2×2 system? HINT. Show that the matrix of the linearization has the form JA where A is symmetric and

$$J = \left(\begin{array}{cc} 0 & I \\ -I & 0 \end{array}\right)$$

(b) Suppose $x, y \in \mathbb{R}$ and

$$H(x, y, \mu) = \frac{1}{2}y^{2} + V(x, \mu), \qquad V(x, \mu) = \frac{1}{4}x^{4} - \frac{1}{2}\mu x^{2},$$

where $\mu \in \mathbb{R}$ is a parameter. Determine the equilibria of the corresponding Hamiltonian system as a function of μ , classify them. Sketch the resulting phase planes and the bifurcation diagram.