Problem set 7: Solutions

Math 207A, Fall 2018

1. The normal form for a Takens-Bogdanov bifurcation is the following 2×2 system depending on two parameters (μ, ν) :

$$
\dot{x}=y, \quad \dot{y}=\mu+\nu y+x^{2}+x y .
$$

(a) What is the algebraic structure of the linearized system at $(x, y ; \mu, \nu)=$ $(0,0 ; 0,0)$? Find the equilibria, classify them, and determine what bifurcations of equilibria occur as (μ, ν) vary over $(\mu, \nu) \neq(0,0)$.
(b) Compare your results with the global phase portraits shown in Figure 8.14 of the text by Meiss.

Solution

- When $\mu=\nu=0$, the matrix in the linearization at $(0,0)$ is

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

which is a nondiagonalizable matrix that has a double eigenvalue $\lambda=0$ with geometric multiplicity one.

- There are no fixed points for $\mu>0$. The fixed points for $\mu \leq 0$ are

$$
(x, y)=(\bar{x}(\mu), 0), \quad \bar{x}(\mu)= \pm \sqrt{-\mu}
$$

The Jacobian evaluted at these fixed points is

$$
\left(\begin{array}{cc}
0 & 1 \\
2 \bar{x} & \nu+\bar{x}
\end{array}\right)
$$

with eigenvalues

$$
\lambda=\frac{1}{2}\left(\nu+\bar{x} \pm \sqrt{(\nu+\bar{x})^{2}+8 \bar{x}}\right) .
$$

- It follows that a saddle node bifurcation occurs at $(x, y ; \mu, \nu)=(0,0 ; 0, \nu)$ for fixed $\nu \neq 0$, where $\lambda=0, \nu$ and the two fixed points collide and disappear as μ increases through zero.
- In addition, a Hopf bifurcation can (and does) occur at

$$
(x, y ; \mu, \nu)=(-\sqrt{-\mu}, 0 ; \mu, \sqrt{-\mu})
$$

for $\mu<0$ and $\nu>0$, when $\lambda= \pm i \sqrt{2 \sqrt{-\mu}}$ is a purely imaginary complex conjugate pair.

- There is a further global homoclinic bifurcation in which the limit cycle created in the Hopf bifurcation disappears by colliding with a saddlepoint. This bifurcation can be shown to occur on a curve

$$
\mu=-\frac{49}{25} \nu^{2}+O\left(\nu^{5 / 2}\right) \quad \text { as } \nu \rightarrow 0^{+} .
$$

2. (a) Consider a Hamiltonian system for $x, y \in \mathbb{R}^{n}$

$$
\dot{x}=\frac{\partial H}{\partial y}, \quad \dot{y}=-\frac{\partial H}{\partial x}
$$

with Hamiltonian $H(x, y) \in \mathbb{R}$. Show that if λ is an eigenvalue of the linearization at an equilibrium, then so is $-\lambda$. What are the possible forms of the eigenvalues for a 2×2 system? Hint. Show that the matrix of the linearization has the form $J A$ where A is symmetric and

$$
J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

(b) Suppose $x, y \in \mathbb{R}$ and

$$
H(x, y, \mu)=\frac{1}{2} y^{2}+V(x, \mu), \quad V(x, \mu)=\frac{1}{4} x^{4}-\frac{1}{2} \mu x^{2}
$$

where $\mu \in \mathbb{R}$ is a parameter. Determine the equilibria of the corresponding Hamiltonian system as a function of μ, classify them. Sketch the resulting phase planes and the bifurcation diagram.

Solution

- The linearized system has the form

$$
\binom{x}{y}_{t}=J A\binom{x}{y}, \quad A=\left(\begin{array}{cc}
\partial^{2} H / \partial x^{2} & \partial^{2} H / \partial x \partial y \\
\partial^{2} H / \partial y \partial x & \partial^{2} H / \partial y^{2}
\end{array}\right)
$$

where the Hessian matrix A of H is evaluated at the fixed point. The equality of mixed partial derivatives of H, which we assume is smooth, implies that A is symmetric.

- Let

$$
p(\lambda)=\operatorname{det}(J A-\lambda I)
$$

denote the characteristic polynomial of the Jacobian matrix $J A$. Then, since a matrix and its transpose have the same determinant, and

$$
J^{T}=-J, \quad J^{2}=-I, \quad \operatorname{det} J^{2}=1
$$

we have that

$$
\begin{aligned}
p(\lambda) & =\operatorname{det}(J A-\lambda I)^{T} \\
& =\operatorname{det}(-A J-\lambda I) \\
& =\operatorname{det}[-J(A J+\lambda I) J] \\
& =\operatorname{det}(J A+\lambda I) \\
& =p(-\lambda) .
\end{aligned}
$$

It follows that if λ is a root of the characteristic polynomial, so is $-\lambda$.

- By reality, if $\lambda \in \mathbb{C}$ is an eigenvalue of $J A$, so is $\bar{\lambda}$. It follows that for a 2×2 system, the only three possibilities are: (i) two distinct real eigenvalues $\{\lambda,-\lambda\}$ where $\lambda>0$; (ii) a pair of purely imaginary eigenvalues $\{i \omega,-i \omega\}$ where $\omega>0$; (iii) an eigenvalue $\lambda=0$ with algebraic multiplicity two.
- The equilibria are given by $H_{x}=H_{y}=0$, which imples that $y=0$ and

$$
x^{3}-\mu x=0,
$$

so $x=0$ or $x= \pm \sqrt{\mu}$ for $\mu>0$.

- The matrix of the Jaconian matrix at $(x, y)=(\bar{x}, 0)$ is

$$
J A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
3 \bar{x}^{2}-\mu & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
\mu-3 \bar{x}^{2} & 0
\end{array}\right)
$$

with eigenvalues

$$
\lambda= \pm \sqrt{\mu-3 \bar{x}^{2}} .
$$

- It follows that $(0,0)$ is a stable center for $\mu<0$ and an unstable saddle point for $\mu>0$. The equilibria $(\pm \sqrt{\mu}, 0)$ are stable centers for $\mu>0$.
- This center-saddle bifurcation is a (supercritical) Hamiltonian pitchfork bifurcation. In it, a center turns into a saddle and two new centers appear, while a complex conjugate pair of eigenvalues collide at the origin and split into positive and negative real eigenvalues. This differs from a standard pitchfork bifurcation in nonconservative systems, where a stable node turns into a saddle point and two new stable nodes appear, while a single real eigenvalue crosses the origin.

