
Problem set 8: Solutions
Math 207A, Fall 2018

1. Sketch the phase plane of the system

xt = x2, yt = −y.

Linearize the system about the equilibrium (0, 0) and determine the unstable,
stable, and center subspaces of the equilibrium. What is the stable manifold
W s(0, 0)? Show that there are many possible choices of an invariant (C1)
center manifold W c(0, 0) that is tangent to the center subspace at (0, 0).

Solution

• the linearized system at (0, 0) is

xt = 0, yt = −y.

This has eigenvalues λ = −1, 0 with corresponding eigenvectors ~r =
(0, 1)T , (1, 0)T which span the (one-dimensional) stable and center sub-
spaces, respectively. The (zero-dimensional) unstable subspace consists
of 0.

• The equation of the trajectories is

dy

dx
= − y

x2

Separating variables and solving this equation, we find that

y = Ce1/x

where C is a constant of integration.

• For C 6= 0, the trajectories approach the origin smoothly (C∞) as x→
0−, go to infinity as x→ 0+,a and approach the horizontal asymptote
y = C as |x| → ∞.

• The stable subspace of the origin, the y-axis, is invariant under the
flow, so it is also the stable manifold. The unstable manifold is 0.



• Any curve of the form

y =

{
Ce1/x −∞ < x < 0

0 0 ≤ x

for some constant C is a smooth (C∞) invariant manifold. (It consists
of three trajectories: the part for x < 0, the equilibrium 0, and the
positive x-axis.) It is tangent to the center subspace at 0, so any such
curve is a center manifold. In particular, the whole x-axis is a center
manifold (C = 0), but it is not the only one.



2. The following Selkov system for x(t), y(t) ≥ 0, depending on parameters
a, µ > 0, provides a simple model of glycolysis:

xt = −x+ ay + x2y, yt = µ− ay − x2y.

(a) Find the fixed point and classify it as a function of the parameters. Show
that if 0 < a < 1/8, then there are possible Hopf bifurcations as µ increases
from 0 to ∞. What are the possible Hopf bifurcation points (x0, y0;µ0)?

(b) By plotting the phase planes numerically, show that Hopf bifurcations
occur at the points in (a) and determine whether they are subcritical or
supercritical.

Solution

• The fixed point is

x̄ = µ, ȳ =
µ

a+ µ2
.

The fixed point changes stability, with a complex conjugate pair of
eigenvalues passing through the imaginary axis, when

µ2 =
1

2

(
1− 2a±

√
1− 8a

)
,

so these are the possible Hopf bifircation points.

• Numerical solutions show that there is a supercritical Hopf bifurca-
tion as µ increases through the smaller value, and a subcritical Hopf
bifurcation as µ increases through the larger value.

Remark. See S. H Strogatz, Nonlinear dynamics and Chaos, pp. 205–209
for more details (where µ = b). The Wikipedia page on Hopf Bifurcation has
a nice animation of the numerical solutions.

https://en.wikipedia.org/wiki/Hopf_bifurcation
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Figure 1: Graphs of y = tan−1 x (blue) and y = −2x/µ for: µ = −4 (green);
µ = −2 (red); µ = −1 (cyan); µ = 2 (magenta).

3. Consider the following discrete dynamical system for xn ∈ R depending
on a parameter µ ∈ R:

xn+1 = −µ
2

tan−1 xn.

(a) Describe the fixed point(s) of the system and determine their stability.
What bifurcations of fixed points occur as µ increases from −∞ to ∞?

(b) Show that a period-doubling bifurcation occurs at µ = 2. Is the resulting
period-two orbit stable or unstable?

Solution

• (a) The fixed points of the map

f(x;µ) = −µ
2

tan−1 x

correspond to intersections of the line µy = −2x with the graph y =
tan−1 x. (See Figure 1.)



• If µ < −2, then the slope of the line is positive and less than the slope
of the inverse tangent at x = 0, and there are three such points with

x = 0, x = ±x̄(µ)

where x̄(µ) > 0 satisfies

− 2

µ
x̄ = tan−1 x̄.

If µ ≥ −2, then there is a unique fixed point at x = 0.

• If µ = −2, then the line is tangent to the graph of the inverse tangent
at x = 0, and a subcritical pitchfork bifurcation occurs as µ increases
through −2. There are no other bifurcations of fixed points.

• We have

fx(x;µ) = −µ
2

1

1 + x2
.

Thus, fx(0;µ) = −µ/2, so |fx(0, µ)| < 1 if |µ| < 2 and |fx(0, µ)| > 1 if
|µ| > 2. It follows that the fixed point x = 0 is asymptotically stable if
|µ| < 2 and unstable if |µ| > 2.

• The fixed point x = 0 gains stability as µ increases through −2 and the
eigenvalue fx(0;µ) decreases through 1 (corresponding to a bifurcation
of fixed points); and loses stability as µ increases through 2 and the
eigenvalue fx(0;µ) decreases through −1.

• If µ < −2, then

fx (±x̄(µ);µ) = −µ
2

1

1 + x̄2(µ)
.

The graph of y = tanx has smaller slope than the line y = −2x/µ at
x = x̄(µ), so 0 < fx (x̄(µ);µ) < 1, and these fixed points are stable.
This claim is clear geometrically, but we omit an analytical proof.

• (b) A period doubling bifurcation can occur at (x, mu) = (0, 2) since
the eigenvalue fx(0;µ) decreases through −1. A discussion of whether
the bifurcation is subcritical or supercritical and the stability of the
periodic orbit is omitted.



4. The Hénon map on R2 is given by

xn+1 = a− byn − x2n,
yn+1 = xn.

(a) Find the fixed points and determine their stability.

(b) Carry out a numerical exploration of this map for various values of the
parameters a, b ∈ R. It’s up to you how much you want to explore, especially
at the end of the quarter, but you should provide a plot of the forward orbit of
the point (x0, y0) = (0, 0) for a = 1.4 and b = −0.3 in the region −2 ≤ x ≤ 2,
−2 ≤ y ≤ 2 and briefly discuss the result.

Solution

• (a) The fixed points (x, y) satisfy

x = a− by − x2, y = x

which gives

x = y =
1

2

[
−(1 + b)±

√
(1 + b)2 + 4a

]
.

There are no fixed points if 4a < −(1 + b)2.

• The Jacobian matrix is

D(x,y)f =

(
−2x −b

1 0

)
,

with eigenvalues
λ = −x±

√
x2 − b.

The fixed points are asymptotically stable if |λ| < 1 for both eigenval-
ues, and unstable if |λ| > 1 for at least one eigenvalue.

• For a = 1.4, b = −0.3, we find (hopefully correctly) that x ≈ 0.884
with eigenvalues λ ≈ 0.156,−1.924, or x ≈ −1.584 with eigenvalues
λ ≈ −0.092, 3.260. Both fixed points are (orientation reversing) saddle
points with |λ1| < 1 and |λ2| > 1.

• (b) Numerical solutions should show that the orbit approaches the
Hénon attractor, which is a strange attractor with a fractal, Cantor
set structure. This chaotic behavior is associated with a homoclinic
tangle that results from transverse intersection of the stable and un-
stable manifolds of the saddle points.


