1. Sketch the phase plane of the system

$$
x_{t}=x^{2}, \quad y_{t}=-y .
$$

Linearize the system about the equilibrium $(0,0)$ and determine the unstable, stable, and center subspaces of the equilibrium. What is the stable manifold $W^{s}(0,0)$? Show that there are many possible choices of an invariant $\left(C^{1}\right)$ center manifold $W^{c}(0,0)$ that is tangent to the center subspace at $(0,0)$.

Solution

- the linearized system at $(0,0)$ is

$$
x_{t}=0, \quad y_{t}=-y
$$

This has eigenvalues $\lambda=-1,0$ with corresponding eigenvectors $\vec{r}=$ $(0,1)^{T},(1,0)^{T}$ which span the (one-dimensional) stable and center subspaces, respectively. The (zero-dimensional) unstable subspace consists of 0 .

- The equation of the trajectories is

$$
\frac{d y}{d x}=-\frac{y}{x^{2}}
$$

Separating variables and solving this equation, we find that

$$
y=C e^{1 / x}
$$

where C is a constant of integration.

- For $C \neq 0$, the trajectories approach the origin smoothly $\left(C^{\infty}\right)$ as $x \rightarrow$ 0^{-}, go to infinity as $x \rightarrow 0^{+}$, a and approach the horizontal asymptote $y=C$ as $|x| \rightarrow \infty$.
- The stable subspace of the origin, the y-axis, is invariant under the flow, so it is also the stable manifold. The unstable manifold is 0 .
- Any curve of the form

$$
y= \begin{cases}C e^{1 / x} & -\infty<x<0 \\ 0 & 0 \leq x\end{cases}
$$

for some constant C is a smooth $\left(C^{\infty}\right)$ invariant manifold. (It consists of three trajectories: the part for $x<0$, the equilibrium 0 , and the positive x-axis.) It is tangent to the center subspace at 0 , so any such curve is a center manifold. In particular, the whole x-axis is a center manifold $(C=0)$, but it is not the only one.
2. The following Selkov system for $x(t), y(t) \geq 0$, depending on parameters $a, \mu>0$, provides a simple model of glycolysis:

$$
x_{t}=-x+a y+x^{2} y, \quad y_{t}=\mu-a y-x^{2} y .
$$

(a) Find the fixed point and classify it as a function of the parameters. Show that if $0<a<1 / 8$, then there are possible Hopf bifurcations as μ increases from 0 to ∞. What are the possible Hopf bifurcation points $\left(x_{0}, y_{0} ; \mu_{0}\right)$?
(b) By plotting the phase planes numerically, show that Hopf bifurcations occur at the points in (a) and determine whether they are subcritical or supercritical.

Solution

- The fixed point is

$$
\bar{x}=\mu, \quad \bar{y}=\frac{\mu}{a+\mu^{2}} .
$$

The fixed point changes stability, with a complex conjugate pair of eigenvalues passing through the imaginary axis, when

$$
\mu^{2}=\frac{1}{2}(1-2 a \pm \sqrt{1-8 a}),
$$

so these are the possible Hopf bifircation points.

- Numerical solutions show that there is a supercritical Hopf bifurcation as μ increases through the smaller value, and a subcritical Hopf bifurcation as μ increases through the larger value.

Remark. See S. H Strogatz, Nonlinear dynamics and Chaos, pp. 205-209 for more details (where $\mu=b$). The Wikipedia page on Hopf Bifurcation has a nice animation of the numerical solutions.

Figure 1: Graphs of $y=\tan ^{-1} x$ (blue) and $y=-2 x / \mu$ for: $\mu=-4$ (green); $\mu=-2$ (red) $; \mu=-1$ (cyan); $\mu=2$ (magenta).
3. Consider the following discrete dynamical system for $x_{n} \in \mathbb{R}$ depending on a parameter $\mu \in \mathbb{R}$:

$$
x_{n+1}=-\frac{\mu}{2} \tan ^{-1} x_{n} .
$$

(a) Describe the fixed point(s) of the system and determine their stability. What bifurcations of fixed points occur as μ increases from $-\infty$ to ∞ ?
(b) Show that a period-doubling bifurcation occurs at $\mu=2$. Is the resulting period-two orbit stable or unstable?

Solution

- (a) The fixed points of the map

$$
f(x ; \mu)=-\frac{\mu}{2} \tan ^{-1} x
$$

correspond to intersections of the line $\mu y=-2 x$ with the graph $y=$ $\tan ^{-1} x$. (See Figure 1.)

- If $\mu<-2$, then the slope of the line is positive and less than the slope of the inverse tangent at $x=0$, and there are three such points with

$$
x=0, \quad x= \pm \bar{x}(\mu)
$$

where $\bar{x}(\mu)>0$ satisfies

$$
-\frac{2}{\mu} \bar{x}=\tan ^{-1} \bar{x} .
$$

If $\mu \geq-2$, then there is a unique fixed point at $x=0$.

- If $\mu=-2$, then the line is tangent to the graph of the inverse tangent at $x=0$, and a subcritical pitchfork bifurcation occurs as μ increases through -2 . There are no other bifurcations of fixed points.
- We have

$$
f_{x}(x ; \mu)=-\frac{\mu}{2} \frac{1}{1+x^{2}} .
$$

Thus, $f_{x}(0 ; \mu)=-\mu / 2$, so $\left|f_{x}(0, \mu)\right|<1$ if $|\mu|<2$ and $\left|f_{x}(0, \mu)\right|>1$ if $|\mu|>2$. It follows that the fixed point $x=0$ is asymptotically stable if $|\mu|<2$ and unstable if $|\mu|>2$.

- The fixed point $x=0$ gains stability as μ increases through -2 and the eigenvalue $f_{x}(0 ; \mu)$ decreases through 1 (corresponding to a bifurcation of fixed points); and loses stability as μ increases through 2 and the eigenvalue $f_{x}(0 ; \mu)$ decreases through -1 .
- If $\mu<-2$, then

$$
f_{x}(\pm \bar{x}(\mu) ; \mu)=-\frac{\mu}{2} \frac{1}{1+\bar{x}^{2}(\mu)} .
$$

The graph of $y=\tan x$ has smaller slope than the line $y=-2 x / \mu$ at $x=\bar{x}(\mu)$, so $0<f_{x}(\bar{x}(\mu) ; \mu)<1$, and these fixed points are stable. This claim is clear geometrically, but we omit an analytical proof.

- (b) A period doubling bifurcation can occur at $(x, m u)=(0,2)$ since the eigenvalue $f_{x}(0 ; \mu)$ decreases through -1 . A discussion of whether the bifurcation is subcritical or supercritical and the stability of the periodic orbit is omitted.

4. The Hénon map on \mathbb{R}^{2} is given by

$$
\begin{aligned}
x_{n+1} & =a-b y_{n}-x_{n}^{2} \\
y_{n+1} & =x_{n}
\end{aligned}
$$

(a) Find the fixed points and determine their stability.
(b) Carry out a numerical exploration of this map for various values of the parameters $a, b \in \mathbb{R}$. It's up to you how much you want to explore, especially at the end of the quarter, but you should provide a plot of the forward orbit of the point $\left(x_{0}, y_{0}\right)=(0,0)$ for $a=1.4$ and $b=-0.3$ in the region $-2 \leq x \leq 2$, $-2 \leq y \leq 2$ and briefly discuss the result.

Solution

- (a) The fixed points (x, y) satisfy

$$
x=a-b y-x^{2}, \quad y=x
$$

which gives

$$
x=y=\frac{1}{2}\left[-(1+b) \pm \sqrt{(1+b)^{2}+4 a}\right] .
$$

There are no fixed points if $4 a<-(1+b)^{2}$.

- The Jacobian matrix is

$$
D_{(x, y)} f=\left(\begin{array}{cc}
-2 x & -b \\
1 & 0
\end{array}\right)
$$

with eigenvalues

$$
\lambda=-x \pm \sqrt{x^{2}-b}
$$

The fixed points are asymptotically stable if $|\lambda|<1$ for both eigenvalues, and unstable if $|\lambda|>1$ for at least one eigenvalue.

- For $a=1.4, b=-0.3$, we find (hopefully correctly) that $x \approx 0.884$ with eigenvalues $\lambda \approx 0.156,-1.924$, or $x \approx-1.584$ with eigenvalues $\lambda \approx-0.092,3.260$. Both fixed points are (orientation reversing) saddle points with $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|>1$.
- (b) Numerical solutions should show that the orbit approaches the Hénon attractor, which is a strange attractor with a fractal, Cantor set structure. This chaotic behavior is associated with a homoclinic tangle that results from transverse intersection of the stable and unstable manifolds of the saddle points.

