PROBLEM SET 8: Solutions
Math 207A, Fall 2018

1. Sketch the phase plane of the system

2
Ty =T, Yt = —Y.

Linearize the system about the equilibrium (0, 0) and determine the unstable,
stable, and center subspaces of the equilibrium. What is the stable manifold
W#(0,0)? Show that there are many possible choices of an invariant (C')
center manifold W¢(0,0) that is tangent to the center subspace at (0,0).

Solution

e the linearized system at (0,0) is
=0,  y=-v

This has eigenvalues A\ = —1,0 with corresponding eigenvectors 7 =
(0,1)7, (1,0)T which span the (one-dimensional) stable and center sub-
spaces, respectively. The (zero-dimensional) unstable subspace consists
of 0.

e The equation of the trajectories is

dy y

dr 22

Separating variables and solving this equation, we find that
Yy = Cell®

where C' is a constant of integration.

e For C' # 0, the trajectories approach the origin smoothly (C*) as z —
0™, go to infinity as z — 0T,a and approach the horizontal asymptote
y=C as |z| = oc.

e The stable subspace of the origin, the y-axis, is invariant under the
flow, so it is also the stable manifold. The unstable manifold is 0.



e Any curve of the form

B Cel/* —co<x<0
Yo 0<z

for some constant C' is a smooth (C'*°) invariant manifold. (It consists
of three trajectories: the part for x < 0, the equilibrium 0, and the
positive x-axis.) It is tangent to the center subspace at 0, so any such
curve is a center manifold. In particular, the whole x-axis is a center
manifold (C' = 0), but it is not the only one.



2. The following Selkov system for x(t),y(t) > 0, depending on parameters
a, ;> 0, provides a simple model of glycolysis:

T =—x+ay+aty,  yo=p—ay—a’y.

(a) Find the fixed point and classify it as a function of the parameters. Show
that if 0 < a < 1/8, then there are possible Hopf bifurcations as p increases
from 0 to co. What are the possible Hopf bifurcation points (o, yo; tio)?
(b) By plotting the phase planes numerically, show that Hopf bifurcations
occur at the points in (a) and determine whether they are subcritical or
supercritical.

Solution

e The fixed point is
1

a+ p?
The fixed point changes stability, with a complex conjugate pair of
eigenvalues passing through the imaginary axis, when

(1—-2a++v1-8a),

T=p g=

p=

DN | —

so these are the possible Hopf bifircation points.

e Numerical solutions show that there is a supercritical Hopf bifurca-
tion as u increases through the smaller value, and a subcritical Hopf
bifurcation as p increases through the larger value.

Remark. See S. H Strogatz, Nonlinear dynamics and Chaos, pp. 205-209
for more details (where p = b). The Wikipedia page on Hopf Bifurcation has
a nice animation of the numerical solutions.


https://en.wikipedia.org/wiki/Hopf_bifurcation

Figure 1: Graphs of y = tan~! z (blue) and y = —2x/u for: p = —4 (green);
= —2 (red); p = —1 (cyan); u = 2 (magenta).

3. Consider the following discrete dynamical system for x,, € R depending
on a parameter p € R:

_ Mt -1
Tnt1 = —§ an - ITy.

(a) Describe the fixed point(s) of the system and determine their stability.
What bifurcations of fixed points occur as p increases from —oo to oo?

(b) Show that a period-doubling bifurcation occurs at p = 2. Is the resulting
period-two orbit stable or unstable?

Solution

e (a) The fixed points of the map
flosp) = =5 tan~' o

correspond to intersections of the line yuy = —2z with the graph y =
tan~'z. (See Figure[l])



If © < —2, then the slope of the line is positive and less than the slope
of the inverse tangent at x = 0, and there are three such points with

where Z(u) > 0 satisfies
1

——I =tan " Z.
I

If 1 > —2, then there is a unique fixed point at x = 0.

If 1 = —2, then the line is tangent to the graph of the inverse tangent
at z = 0, and a subcritical pitchfork bifurcation occurs as p increases
through —2. There are no other bifurcations of fixed points.

We have .

)=

Thus, £,(05 1) = —41/2, 50 | £o(0, 1)] < 1if || < 2 and |£,(0, )] > 1 if
|| > 2. Tt follows that the fixed point x = 0 is asymptotically stable if
|| < 2 and unstable if |p| > 2.

The fixed point z = 0 gains stability as u increases through —2 and the
eigenvalue f,.(0; 1) decreases through 1 (corresponding to a bifurcation
of fixed points); and loses stability as p increases through 2 and the
eigenvalue f,(0; 1) decreases through —1.

If £ < =2, then

_ " 1
z (£ )= ST T =
The graph of y = tanz has smaller slope than the line y = —2x/u at
x = Z(p), so 0 < f, (Z(p); ) < 1, and these fixed points are stable.
This claim is clear geometrically, but we omit an analytical proof.

(b) A period doubling bifurcation can occur at (x, mu) = (0,2) since
the eigenvalue f,(0; u) decreases through —1. A discussion of whether
the bifurcation is subcritical or supercritical and the stability of the
periodic orbit is omitted.



4. The Hénon map on R? is given by
Tpy1 = a — by, — 22,
Yn+1 = Tn.
(a) Find the fixed points and determine their stability.
(b) Carry out a numerical exploration of this map for various values of the
parameters a,b € R. It’s up to you how much you want to explore, especially
at the end of the quarter, but you should provide a plot of the forward orbit of
the point (2o, yo) = (0,0) for a = 1.4 and b = —0.3 in the region —2 < z < 2,
—2 <y < 2 and briefly discuss the result.
Solution
e (a) The fixed points (z,y) satisfy
r=a—by— 2% y=ux
which gives
1
r=y=3 [—(1+b)i (1+b)2+4a} .
There are no fixed points if 4a < —(1 + b)?.

e The Jacobian matrix is
—2x —b
D(w,y)f:< 1 0 >’

A= —x+ Va2 -0

The fixed points are asymptotically stable if |[A\| < 1 for both eigenval-
ues, and unstable if |A| > 1 for at least one eigenvalue.

with eigenvalues

e For a = 1.4, b = —0.3, we find (hopefully correctly) that = ~ 0.884
with eigenvalues A ~ 0.156, —1.924, or x ~ —1.584 with eigenvalues
A~ —0.092, 3.260. Both fixed points are (orientation reversing) saddle
points with [A;| < 1 and |As| > 1.

e (b) Numerical solutions should show that the orbit approaches the
Hénon attractor, which is a strange attractor with a fractal, Cantor
set structure. This chaotic behavior is associated with a homoclinic
tangle that results from transverse intersection of the stable and un-
stable manifolds of the saddle points.



