FINAL EXAM Math 207B, Winter 2012 Solutions

1. [20 pts] (a) Find the Green's function for the following BVP

$$-u'' = f(x), \qquad 0 < x < 1,$$

$$u(0) = 0, \qquad u'(1) = 0.$$

Draw a graph of the Green's function $G(x,\xi)$ versus x for fixed $0 < \xi < 1$. (b) Evaluate the Green's function representation of the solution

$$u(x) = \int_0^1 G(x,\xi) f(\xi) \, d\xi$$

in the case when f(x) = x, and verify that it is the solution of the BVP.

Solution

• (a) Solutions of the homogeneous equation -u'' = 0 that satisfy the left and right boundary conditions are $u_1(x) = x$, $u_2(x) = 1$, with Wronskian -1. The Green's function is

$$G(x,\xi) = \begin{cases} x & 0 \le x \le \xi, \\ \xi & \xi \le x \le 1. \end{cases}$$

- The Green's function is linear for $0 \le x \le \xi$ and constant for $\xi \le x \le 1$. Physically, this solution describes (for example) the steady temperature due to a point source in a rod whose left end is held at a fixed temperature and whose right end is insulated. The temperature u is constant between the point source and the insulated end, and there is a constant heat flux $-u_x$ from the point source to the end held at a fixed temperature.
- (b) For f(x) = x, the Green's function representation of the solution

gives

$$u(x) = \int_0^1 G(x,\xi)\xi \,d\xi$$

= $\int_0^x \xi \cdot \xi \,d\xi + \int_x^1 x \cdot \xi \,d\xi$
= $\left[\frac{1}{3}\xi^3\right]_0^x + x \left[\frac{1}{2}\xi^2\right]_x^1$
= $\frac{1}{2}x - \frac{1}{6}x^3$.

• This solution is the sum of a particular solution $u_p(x) = -\frac{1}{6}x^3$ of the non-homogeneous ODE and a solution $u_h(x) = \frac{1}{2}x$ of the homogeneous ODE which ensures that u(x) satisfies the BCs at x = 0, x = 1.

2. [25 pts] (a) Find the eigenvalues and eigenfunctions for the Sturm-Liouville eigenvalue problem

$$-u'' = \lambda u \qquad 0 < x < 1,$$

$$u'(0) = 0, \quad u'(1) = 0.$$

(b) If $0 < \xi < 1$, write down the expansion of the delta-function $\delta(x - \xi)$, regarded as a function of x, with respect to the eigenfunctions from part (a). (c) Use separation of variables to solve the following IBVP for the heat equation for $u(x,t;\xi)$ with an initial point source located at $x = \xi$, where $0 < \xi < 1$,

$$u_t = u_{xx} \qquad 0 < x < 1 \quad t > 0, u_x(0, t; \xi) = 0, \quad u_x(1, t; \xi) = 0, u(x, 0; \xi) = \delta(x - \xi).$$

How does the solution behave as $t \to \infty$?

Solution

• (a) The eigenvalues and eigenfunctions are

$$\lambda_n = n^2 \pi^2, \qquad \phi_n(x) = \cos n\pi x$$

where $n = 0, 1, 2, 3, \ldots$ These are normalized so that

$$\int_0^1 \phi_0^2 \, dx = 1, \qquad \int_0^1 \phi_n^2 \, dx = \frac{1}{2} \quad \text{for } n = 1, 2, 3, \dots$$

• (b) The eigenfunction expansion of a function f(x) is the Fourier cosine series

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos n\pi x, \qquad a_n = 2\int_0^1 f(x) \cos n\pi x \, dx.$$

For $f(x) = \delta(x - \xi)$, we get $a_n = 2 \cos n\pi \xi$, and

$$\delta(x-\xi) = 1 + 2\sum_{n=1}^{\infty} \cos(n\pi x) \cos(n\pi\xi)$$

where the series converges in a distributional sense.

• (c) The separated solutions of the heat equation are

$$u(x,t) = X(x)e^{-\lambda t}$$

where

$$-X'' = \lambda X, \qquad X'(0) = 0, \quad X'(1) = 0.$$

It follows that $\lambda = n^2 \pi^2$ and $X = \cos n\pi x$, as above, and by superposition the general solution for u(x,t) is

$$u(x,t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n e^{-n^2 \pi^2 t} \cos(n\pi x).$$

Imposing the initial condition, we find that the coefficients a_n are the ones obtained in (b), so that

$$u(x,t;\xi) = 1 + 2\sum_{n=1}^{\infty} e^{-n^2\pi^2 t} \cos(n\pi x) \cos(n\pi\xi).$$

• As $t \to \infty$ all the terms approach zero except for the constant term, and so

$$u(x,t;\xi) \to 1$$
 as $t \to \infty$.

This constant is what we would expect from conservation of energy, since

$$\frac{d}{dt} \int_0^1 u(x,t) \, dx = 0, \qquad \int_0^1 \delta(x-\xi) \, dx = 1.$$

Remark. The solution in (c) is the Green's function for this IBVP. Writing this Green's function as $G(x,t;\xi)$, instead of $u(x,t;\xi)$, we can represent the solution u(x,t) of the IBVP with general initial data

$$u_t = u_{xx},$$

 $u_x(0,t) = 0,$ $u_x(1,t) = 0$
 $u(x,0) = f(x)$

as

$$u(x,t) = \int_0^1 G(x,t;\xi) f(\xi) \, d\xi.$$

Note that $G(x,t;\xi)$ a smooth function for all t > 0 since its Fourier coefficients decay exponentially as $n \to \infty$.

3. [15 pts] Show that the solution u(x) of the Fredholm integral equation

$$u(x) - \int_0^1 (x+y) u(y) \, dy = 1, \qquad 0 \le x \le 1$$

has the form u(x) = ax + b for some constants a, b and solve the equation.

Solution

• The integral equation is a degenerate self-adjoint Fredholm equation of the second kind with kernel

$$k(x,y) = x \cdot 1 + 1 \cdot y.$$

• It follows from the equation that

$$u(x) = \left(\int_0^1 u(y) \, dy\right) x + \int_0^1 y u(y) \, dy + 1,$$

so u(x) = ax + b where

$$a = \int_0^1 u(y) \, dy, \qquad b = \int_0^1 y u(y) \, dy + 1.$$

• Using u = ax + b in these equations, we get

$$a = \int_0^1 (ay+b) \, dy = \frac{1}{2}a + b,$$

$$b = \int_0^1 y(ay+b) \, dy = \frac{1}{3}a + \frac{1}{2}b + 1$$

or

$$a - 2b = 0, \qquad -2a + 3b = 6.$$

• This is a non-singular system (meaning that 1 is not an eigenvalue of the integral operator) with solution a = -12, b = -6, so the unique solution of the integral equation is

$$u(x) = -6(2x+1).$$

4. [10 pts] Suppose that u(x) minimizes the functional

$$J(u) = \int_0^1 \left\{ \frac{1}{2} [u'(x)]^2 - xu(x) \right\} dx$$

over the space of C^2 -functions such that u(0) = 0, u'(1) = 0. Find the boundary value problem satisfied by u and solve for u.

Solution

• The Euler-Lagrange equation for this functional is

$$-u'' = x,$$
 $u(0) = 0,$ $u'(1) = 1.$

The solution is the function from Problem 1,

$$u(x) = \frac{1}{2}x - \frac{1}{6}x^3.$$

• To derive the Euler-Lagrange equation, we compute for any smooth function h(x) such that h(0) = h'(1) = 0 that

$$\begin{aligned} \left. \frac{d}{d\epsilon} J(u+\epsilon h) \right|_{\epsilon=0} &= \left. \frac{d}{d\epsilon} \int_0^1 \left\{ \frac{1}{2} (u'+\epsilon h')^2 - x(u+\epsilon h) \right\} dx \right|_{\epsilon=0} \\ &= \int_0^1 (u'h'-xh) dx \\ &= [u'h]_0^1 - \int_0^1 (u''h+xh) dx \\ &= -\int_0^1 (u''+x) h dx. \end{aligned}$$

If u minimizes J on functions that satisfy the BCs, then this derivative of J in the direction h must vanish for all functions h, which implies that u'' + x = 0. **5.** [10 pts] Suppose that Ω is a smooth, bounded region in \mathbb{R}^n . Use a Green's identity to show that if $\lambda \leq 0$, then the only solution of the BVP

$$\begin{aligned} &-\Delta u = \lambda u & x \in \Omega \\ &u = 0 & x \in \partial \Omega \end{aligned}$$

is u = 0, so λ is not an eigenvalue. Why doesn't the argument apply if $\lambda > 0$?

Solution

• By Green's first identity (or the divergence theorem)

$$\int_{\Omega} \left(u\Delta u + |\nabla u|^2 \right) \, dx = \int_{\Omega} \nabla \cdot \left(u\nabla u \right) \, dx = \int_{\partial \Omega} u \frac{\partial u}{\partial n} \, dS.$$

The integral over $\partial \Omega$ is zero since u = 0 on the boundary. Using the PDE we get

$$\int_{\Omega} \left(-\lambda u^2 + |\nabla u|^2 \right) \, dx = 0.$$

• If $\lambda \leq 0$ then all the terms in this equation are nonnegative, so

$$\lambda \int_{\Omega} u^2 dx = 0, \qquad \int_{\Omega} |\nabla u|^2 dx = 0.$$

If $\lambda < 0$, we conclude immediately from the first equation that u = 0. If $\lambda = 0$, then $\nabla u = 0$, so u = constant, and then u = 0 since it vanishes on the boundary.

• If $\lambda > 0$, this argument fails because the integrals may cancel. In fact, if λ is an eigenvalue of the Dirichlet Laplancian with eigenfunction ϕ , then we have

$$\lambda = \frac{\int_{\Omega} |\nabla \phi|^2 \, dx}{\int_{\Omega} \phi^2 \, dx}.$$

The right-hand side of this equation is the Rayleigh quotient for the Laplacian.

Extra Credit Question: Attempt only if time permits

Consider the Sturm-Liouville equation for u(x)

$$-(pu')' + qu = \lambda ru \tag{1}$$

where p(x), q(x), r(x) are given smooth coefficient functions and λ is a constant. Write

$$u = \rho \sin \theta, \qquad pu' = \rho \cos \theta$$
 (2)

where $\rho(x)$, $\theta(x)$ are two new functions. Show that ρ , θ satisfy the differential equations

$$\theta' = \frac{1}{p}\cos^2\theta + (\lambda r - q)\sin^2\theta,$$

$$\rho' = \left(q - \lambda r + \frac{1}{p}\right)(\sin\theta\cos\theta)\rho.$$
(3)

Explain why a solution of the initial-value problem for these equations, with

$$\theta(x_0) = \theta_0, \qquad \rho(x_0) = \rho_0,$$

exists on any interval containing x_0 in which p(x) is bounded away from zero.

Solution

• Using (2) in (1), we get

$$-(\rho\cos\theta)' + q\rho\sin\theta = \lambda r\rho\sin\theta,$$

or

$$-\rho'\cos\theta + \rho(\sin\theta)\theta' = (\lambda r - q)\rho\sin\theta.$$
(4)

The transformation (2) implies that

$$p(\rho\sin\theta)' = \rho\cos\theta$$

or

$$p\rho'\sin\theta + p\rho(\cos\theta)\theta' = \rho\cos\theta.$$
 (5)

Solving (4)–(5) for θ' and ρ' (multiply (4) by $p \sin \theta$ and (5) by $\cos \theta$ and add to get θ' ; multiply (4) by $p \cos \theta$ and (5) by $\sin \theta$ and subtract to get ρ') we obtain (3).

Note that the equation for θ does not involve ρ, so we can solve it first, then use the result in the equation for ρ. The θ-equation is a nonlinear first-order ODE, but the right hand side is a bounded function of θ (no blow-up is possible!) so its solutions exist for all x provided that 1/p is continuous. Given a solution for θ, the equation for ρ is a linear first order ODE whose solutions also exist for all x.

Remark. This transformation to polar coordinates in the (u, pu') phaseplane is called the Prüfer transformation. It can be used to prove the basic properties of Sturm-Liouville eigenvalue problems, such as the existence of infinitely many eigenvalues, and the oscillation theorems. For example, to study the Sturm-Liouville equation with Dirichlet BCs u(0) = u(1) = 0, we impose the initial condition $\theta(0) = 0$ and look for values of λ such that $\theta(1) = n\pi$ for some integer n.