
Final Exam
Math 207B, Winter 2012

Solutions

1. [20 pts] (a) Find the Green’s function for the following BVP

− u′′ = f(x), 0 < x < 1,

u(0) = 0, u′(1) = 0.

Draw a graph of the Green’s function G(x, ξ) versus x for fixed 0 < ξ < 1.

(b) Evaluate the Green’s function representation of the solution

u(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ

in the case when f(x) = x, and verify that it is the solution of the BVP.

Solution

• (a) Solutions of the homogeneous equation −u′′ = 0 that satisfy the
left and right boundary conditions are u1(x) = x, u2(x) = 1, with
Wronskian −1. The Green’s function is

G(x, ξ) =

{
x 0 ≤ x ≤ ξ,

ξ ξ ≤ x ≤ 1.

• The Green’s function is linear for 0 ≤ x ≤ ξ and constant for ξ ≤
x ≤ 1. Physically, this solution describes (for example) the steady
temperature due to a point source in a rod whose left end is held at a
fixed temperature and whose right end is insulated. The temperature u
is constant between the point source and the insulated end, and there
is a constant heat flux −ux from the point source to the end held at a
fixed temperature.

• (b) For f(x) = x, the Green’s function representation of the solution



gives

u(x) =

∫ 1

0

G(x, ξ)ξ dξ

=

∫ x

0

ξ · ξ dξ +

∫ 1

x

x · ξ dξ

=

[
1

3
ξ3

]x
0

+ x

[
1

2
ξ2

]1

x

=
1

2
x− 1

6
x3.

• This solution is the sum of a particular solution up(x) = −1
6
x3 of the

non-homogeneous ODE and a solution uh(x) = 1
2
x of the homogeneous

ODE which ensures that u(x) satisfies the BCs at x = 0, x = 1.



2. [25 pts] (a) Find the eigenvalues and eigenfunctions for the Sturm-Liouville
eigenvalue problem

− u′′ = λu 0 < x < 1,

u′(0) = 0, u′(1) = 0.

(b) If 0 < ξ < 1, write down the expansion of the delta-function δ(x − ξ),
regarded as a function of x, with respect to the eigenfunctions from part (a).

(c) Use separation of variables to solve the following IBVP for the heat
equation for u(x, t; ξ) with an initial point source located at x = ξ, where
0 < ξ < 1,

ut = uxx 0 < x < 1 t > 0,

ux(0, t; ξ) = 0, ux(1, t; ξ) = 0,

u(x, 0; ξ) = δ(x− ξ).

How does the solution behave as t→∞?

Solution

• (a) The eigenvalues and eigenfunctions are

λn = n2π2, φn(x) = cosnπx

where n = 0, 1, 2, 3, . . . . These are normalized so that∫ 1

0

φ2
0 dx = 1,

∫ 1

0

φ2
n dx =

1

2
for n = 1, 2, 3, . . . .

• (b) The eigenfunction expansion of a function f(x) is the Fourier cosine
series

f(x) =
1

2
a0 +

∞∑
n=1

an cosnπx, an = 2

∫ 1

0

f(x) cosnπx dx.

For f(x) = δ(x− ξ), we get an = 2 cosnπξ, and

δ(x− ξ) = 1 + 2
∞∑
n=1

cos(nπx) cos(nπξ)

where the series converges in a distributional sense.



• (c) The separated solutions of the heat equation are

u(x, t) = X(x)e−λt

where
−X ′′ = λX, X ′(0) = 0, X ′(1) = 0.

It follows that λ = n2π2 and X = cosnπx, as above, and by superpo-
sition the general solution for u(x, t) is

u(x, t) =
1

2
a0 +

∞∑
n=1

ane
−n2π2t cos(nπx).

Imposing the initial condition, we find that the coefficients an are the
ones obtained in (b), so that

u(x, t; ξ) = 1 + 2
∞∑
n=1

e−n
2π2t cos(nπx) cos(nπξ).

• As t → ∞ all the terms approach zero except for the constant term,
and so

u(x, t; ξ)→ 1 as t→∞.
This constant is what we would expect from conservation of energy,
since

d

dt

∫ 1

0

u(x, t) dx = 0,

∫ 1

0

δ(x− ξ) dx = 1.

Remark. The solution in (c) is the Green’s function for this IBVP. Writing
this Green’s function as G(x, t; ξ), instead of u(x, t; ξ), we can represent the
solution u(x, t) of the IBVP with general initial data

ut = uxx,

ux(0, t) = 0, ux(1, t) = 0,

u(x, 0) = f(x)

as

u(x, t) =

∫ 1

0

G(x, t; ξ)f(ξ) dξ.

Note that G(x, t; ξ) a smooth function for all t > 0 since its Fourier coeffi-
cients decay exponentially as n→∞.



3. [15 pts] Show that the solution u(x) of the Fredholm integral equation

u(x)−
∫ 1

0

(x+ y)u(y) dy = 1, 0 ≤ x ≤ 1

has the form u(x) = ax+ b for some constants a, b and solve the equation.

Solution

• The integral equation is a degenerate self-adjoint Fredholm equation of
the second kind with kernel

k(x, y) = x · 1 + 1 · y.

• It follows from the equation that

u(x) =

(∫ 1

0

u(y) dy

)
x+

∫ 1

0

yu(y) dy + 1,

so u(x) = ax+ b where

a =

∫ 1

0

u(y) dy, b =

∫ 1

0

yu(y) dy + 1.

• Using u = ax+ b in these equations, we get

a =

∫ 1

0

(ay + b) dy =
1

2
a+ b,

b =

∫ 1

0

y(ay + b) dy =
1

3
a+

1

2
b+ 1

or
a− 2b = 0, −2a+ 3b = 6.

• This is a non-singular system (meaning that 1 is not an eigenvalue of
the integral operator) with solution a = −12, b = −6, so the unique
solution of the integral equation is

u(x) = −6(2x+ 1).



4. [10 pts] Suppose that u(x) minimizes the functional

J(u) =

∫ 1

0

{
1

2
[u′(x)]2 − xu(x)

}
dx

over the space of C2-functions such that u(0) = 0, u′(1) = 0. Find the
boundary value problem satisfied by u and solve for u.

Solution

• The Euler-Lagrange equation for this functional is

−u′′ = x, u(0) = 0, u′(1) = 1.

The solution is the function from Problem 1,

u(x) =
1

2
x− 1

6
x3.

• To derive the Euler-Lagrange equation, we compute for any smooth
function h(x) such that h(0) = h′(1) = 0 that

d

dε
J(u+ εh)

∣∣∣∣
ε=0

=
d

dε

∫ 1

0

{
1

2
(u′ + εh′)2 − x(u+ εh)

}
dx

∣∣∣∣
ε=0

=

∫ 1

0

(u′h′ − xh) dx

= [u′h]
1
0 −

∫ 1

0

(u′′h+ xh) dx

= −
∫ 1

0

(u′′ + x)h dx.

If u minimizes J on functions that satisfy the BCs, then this derivative
of J in the direction h must vanish for all functions h, which implies
that u′′ + x = 0.



5. [10 pts] Suppose that Ω is a smooth, bounded region in Rn. Use a Green’s
identity to show that if λ ≤ 0, then the only solution of the BVP

−∆u = λu x ∈ Ω

u = 0 x ∈ ∂Ω

is u = 0, so λ is not an eigenvalue. Why doesn’t the argument apply if λ > 0?

Solution

• By Green’s first identity (or the divergence theorem)∫
Ω

(
u∆u+ |∇u|2

)
dx =

∫
Ω

∇ · (u∇u) dx =

∫
∂Ω

u
∂u

∂n
dS.

The integral over ∂Ω is zero since u = 0 on the boundary. Using the
PDE we get ∫

Ω

(
−λu2 + |∇u|2

)
dx = 0.

• If λ ≤ 0 then all the terms in this equation are nonnegative, so

λ

∫
Ω

u2 dx = 0,

∫
Ω

|∇u|2 dx = 0.

If λ < 0, we conclude immediately from the first equation that u = 0. If
λ = 0, then ∇u = 0, so u = constant, and then u = 0 since it vanishes
on the boundary.

• If λ > 0, this argument fails because the integrals may cancel. In fact,
if λ is an eigenvalue of the Dirichlet Laplancian with eigenfunction φ,
then we have

λ =

∫
Ω
|∇φ|2 dx∫
Ω
φ2 dx

.

The right-hand side of this equation is the Rayleigh quotient for the
Laplacian.



Extra Credit Question: Attempt only if time permits

Consider the Sturm-Liouville equation for u(x)

−(pu′)′ + qu = λru (1)

where p(x), q(x), r(x) are given smooth coefficient functions and λ is a con-
stant. Write

u = ρ sin θ, pu′ = ρ cos θ (2)

where ρ(x), θ(x) are two new functions. Show that ρ, θ satisfy the differential
equations

θ′ =
1

p
cos2 θ + (λr − q) sin2 θ,

ρ′ =

(
q − λr +

1

p

)
(sin θ cos θ) ρ.

(3)

Explain why a solution of the initial-value problem for these equations, with

θ(x0) = θ0, ρ(x0) = ρ0,

exists on any interval containing x0 in which p(x) is bounded away from zero.

Solution

• Using (2) in (1), we get

−(ρ cos θ)′ + qρ sin θ = λrρ sin θ,

or
−ρ′ cos θ + ρ(sin θ)θ′ = (λr − q)ρ sin θ. (4)

The transformation (2) implies that

p(ρ sin θ)′ = ρ cos θ

or
pρ′ sin θ + pρ(cos θ)θ′ = ρ cos θ. (5)

Solving (4)–(5) for θ′ and ρ′ (multiply (4) by p sin θ and (5) by cos θ
and add to get θ′; multiply (4) by p cos θ and (5) by sin θ and subtract
to get ρ′) we obtain (3).



• Note that the equation for θ does not involve ρ, so we can solve it first,
then use the result in the equation for ρ. The θ-equation is a nonlinear
first-order ODE, but the right hand side is a bounded function of θ (no
blow-up is possible!) so its solutions exist for all x provided that 1/p
is continuous. Given a solution for θ, the equation for ρ is a linear first
order ODE whose solutions also exist for all x.

Remark. This transformation to polar coordinates in the (u, pu′) phase-
plane is called the Prüfer transformation. It can be used to prove the basic
properties of Sturm-Liouville eigenvalue problems, such as the existence of
infinitely many eigenvalues, and the oscillation theorems. For example, to
study the Sturm-Liouville equation with Dirichlet BCs u(0) = u(1) = 0,
we impose the initial condition θ(0) = 0 and look for values of λ such that
θ(1) = nπ for some integer n.


