FiNAL ExXAM
Math 207B, Winter 2012
Solutions

1. [20 pts] (a) Find the Green’s function for the following BVP

—u" = f(x), 0<az<l,
w(0)=0,  W/(1)=0.

Draw a graph of the Green’s function G(z, &) versus z for fixed 0 < £ < 1.

(b) Evaluate the Green’s function representation of the solution

u(z) = / G, €)1 (€) de

in the case when f(z) = x, and verify that it is the solution of the BVP.

Solution
e (a) Solutions of the homogeneous equation —u” = 0 that satisfy the
left and right boundary conditions are ui(x) = x, us(x) = 1, with

Wronskian —1. The Green’s function is

G(x,&):{x 0<z <,

§ §<z< L

e The Green’s function is linear for 0 < x < ¢ and constant for £ <
x < 1. Physically, this solution describes (for example) the steady
temperature due to a point source in a rod whose left end is held at a
fixed temperature and whose right end is insulated. The temperature u
is constant between the point source and the insulated end, and there
is a constant heat flux —u, from the point source to the end held at a
fixed temperature.

e (b) For f(x) = z, the Green’s function representation of the solution
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e This solution is the sum of a particular solution w,(z) = —%:173 of the

non-homogeneous ODE and a solution uy(z) = %x of the homogeneous

ODE which ensures that u(z) satisfies the BCs at x =0, z = 1.



2. [25 pts] (a) Find the eigenvalues and eigenfunctions for the Sturm-Liouville
eigenvalue problem

—u" = Mu 0<z<l1,
w'(0) =0, u/'(1)=0.

(b) If 0 < £ < 1, write down the expansion of the delta-function §(z — &),
regarded as a function of z, with respect to the eigenfunctions from part (a).

(c) Use separation of variables to solve the following IBVP for the heat
equation for u(x,t;£) with an initial point source located at x = £, where
0<¢g<l,

Up = Ugy O<z<l t>0,
u(z,0;€) = 6(z = §).

How does the solution behave as t — oo?
Solution
e (a) The eigenvalues and eigenfunctions are
Ay, = n2m2, ¢n() = cosnrx

where n = 0,1,2,3,.... These are normalized so that
1 1 1
/¢3d:v:1, /qbidx:— forn=1,2,3,....
0 0 2

e (b) The eigenfunction expansion of a function f(z) is the Fourier cosine
series

1

©° 1
f(x) = 540 + ; y, COS NI, ap = 2/0 f(z)cosnmx dx.

For f(z) = 0(xz — &), we get a,, = 2 cosnnf, and

z—&=1+2 Z cos(nmx) cos(nmwf)

n=1

where the series converges in a distributional sense.



e (c) The separated solutions of the heat equation are
u(z,t) = X(z)e ™
where
X" =X, X'(0)=0, X'(1)=0.

It follows that A = n?7? and X = cosnnx, as above, and by superpo-
sition the general solution for u(x,t) is

u(z,t) = —ao + Zan T cos(nma).

Imposing the initial condition, we find that the coefficients a,, are the
ones obtained in (b), so that

u(z,t;8) =1+2 Z " cos(nmx) cos(nwé).

e Ast — oo all the terms approach zero except for the constant term,
and so
u(z, ;&) — 1 as t — oo.

This constant is what we would expect from conservation of energy,

since .

1
4 u(z,t)dx =0, / zr—§)de=1.

Remark. The solution in (c) is the Green’s function for this IBVP. Writing
this Green’s function as G(z,t;€), instead of u(x,t;§), we can represent the
solution u(x,t) of the IBVP with general initial data

Ut = Ugy,
u.(0,t) =0, uz(1,t) =0,
u(z,0) = f(z)

ule,t) = /0 G, :€) () de.

Note that G(z,t;¢) a smooth function for all £ > 0 since its Fourier coeffi-
cients decay exponentially as n — oo.



3. [15 pts| Show that the solution u(x) of the Fredholm integral equation

u(x)—/o (x+y)u(y)dy =1, 0<z<1

has the form u(z) = azx + b for some constants a, b and solve the equation.

Solution

e The integral equation is a degenerate self-adjoint Fredholm equation of
the second kind with kernel

k(z,y)=x-1+1-y.

e [t follows from the equation that

o) = ([war) e+ [ g+,

so u(z) = azx + b where
1 1
az/ u(y) dy, b=/ yu(y) dy + 1.
0 0
e Using u = ax + b in these equations, we get

1
1
a:/ (ay +b)dy = —a+0,
0 2

! 11
:/y(ay+b)dy:—a+—b—l—1
) 372

or
a—2b=0, —2a + 3b = 6.

e This is a non-singular system (meaning that 1 is not an eigenvalue of
the integral operator) with solution a = —12, b = —6, so the unique
solution of the integral equation is

u(xr) = —6(2z + 1).



4. [10 pts| Suppose that u(z) minimizes the functional

J(u) = /O 1 {%[u’(m)]Q _ xu(:c)} dz

over the space of C*-functions such that w(0) = 0, v/(1) = 0. Find the
boundary value problem satisfied by u and solve for u.

Solution

e The Euler-Lagrange equation for this functional is

e To derive the Euler-Lagrange equation, we compute for any smooth
function A(x) such that h(0) = A'(1) = 0 that

_d l{l(u'ﬂh')?—x(weh)} da

d
—J(u+ €h) %] 2

de

e=0 e=0

1
= / (u'h — xh) dx
" 1
_ [uh]} — / (W'h + zh) do
-
= —/ (u" + ) hdx.
0

If w minimizes J on functions that satisfy the BCs, then this derivative
of J in the direction A must vanish for all functions h, which implies
that u” +x = 0.



5. [10 pts] Suppose that 2 is a smooth, bounded region in R". Use a Green’s
identity to show that if A < 0, then the only solution of the BVP

— Au = \u z €
u=>0 x € OS2

is u = 0, so A is not an eigenvalue. Why doesn’t the argument apply if A > 07

Solution
e By Green’s first identity (or the divergence theorem)

/(uAu—l— [Vul?) dx:/V-(uVu) dx:/ u% ds.
Q Q a0 On

The integral over 02 is zero since u = 0 on the boundary. Using the
PDE we get

/ (=M + |Vul?) dz = 0.
Q

e If A <0 then all the terms in this equation are nonnegative, so

)\/u2dx:O, /|Vu]2dx:O.
Q Q

If A < 0, we conclude immediately from the first equation that u = 0. If
A =0, then Vu = 0, so u = constant, and then u = 0 since it vanishes
on the boundary.

o If A > 0, this argument fails because the integrals may cancel. In fact,
if X is an eigenvalue of the Dirichlet Laplancian with eigenfunction ¢,
then we have )

)= Jo IV dz
Jo @?dx

The right-hand side of this equation is the Rayleigh quotient for the
Laplacian.



Extra Credit Question: Attempt only if time permits
Consider the Sturm-Liouville equation for u(z)
—(pu') + qu = Aru (1)

where p(x), q(z), r(x) are given smooth coefficient functions and X is a con-
stant. Write

u = psinf, pu' = pcosb (2)

where p(z), 6(z) are two new functions. Show that p, 6 satisfy the differential
equations

0 = 1cos2 0+ (\r — q)sin?0,
p

1 3)
p= (q —Ar+ ]—)) (sinf cos 0) p.

Explain why a solution of the initial-value problem for these equations, with
0(xo) = 6o, p(z0) = po,
exists on any interval containing xy in which p(x) is bounded away from zero.
Solution
e Using (2) in (1), we get
—(pcosh) + qgpsinf = Arpsin 6,

or
—p'cosf + p(sinh)f = (A\r — q)psin6. (4)

The transformation (2) implies that
p(psinf) = pcosd
or
pp'sinf + pp(cos 0)8 = pcosé. (5)

Solving (4)—(5) for ¢ and p’ (multiply (4) by psin® and (5) by cos@
and add to get 6’; multiply (4) by pcos@ and (5) by sin @ and subtract
to get p’) we obtain (3).



e Note that the equation for 8 does not involve p, so we can solve it first,
then use the result in the equation for p. The f-equation is a nonlinear
first-order ODE, but the right hand side is a bounded function of 6 (no
blow-up is possible!) so its solutions exist for all = provided that 1/p
is continuous. Given a solution for 6, the equation for p is a linear first
order ODE whose solutions also exist for all z.

Remark. This transformation to polar coordinates in the (u,pu’) phase-
plane is called the Priifer transformation. It can be used to prove the basic
properties of Sturm-Liouville eigenvalue problems, such as the existence of
infinitely many eigenvalues, and the oscillation theorems. For example, to
study the Sturm-Liouville equation with Dirichlet BCs u(0) = u(1) = 0,
we impose the initial condition #(0) = 0 and look for values of A such that
0(1) = nm for some integer n.



