Sample Final Questions Math 207B, Winter 2012

1. Find an explicit expression for the Green's function for the problem

$$-u'' + u = f(x), 0 < x < 1$$

$$u'(0) = 0, u'(1) = 0.$$

Write down the Green's function representation of the solution for u(x).

2. Use separation of variables and Fourier series to solve the following IBVP for the Schrödinger equation for the complex-valued function $\psi(x,t)$

$$i\psi_t = -\psi_{xx},$$
 $0 < x < 1$
 $\psi(0,t) = 0,$ $\psi(1,t) = 0,$
 $\psi(x,0) = f(x)$

where $f \in L^2(0,1)$ is given initial data. Show from your solution that

$$\int_{0}^{1} |\psi(x,t)|^{2} dx = \int_{0}^{1} |f(x)|^{2} dx \quad \text{for all } t \in \mathbb{R}.$$

3. After non-dimensionalization, the displacement u(x) of a non-uniform string, with density $\rho(x)$, fixed at each end and vibrating with frequency ω satisfies the EVP

$$-u'' = \lambda \rho(x)u, \qquad 0 < x < 1,$$

$$u(0) = 0, \qquad u(1) = 0$$

where $\lambda = \omega^2$. The fundamental frequency of the string is $\omega_1 = \sqrt{\lambda_1}$, where $\lambda = \lambda_1$ is the smallest eigenvalue. If $m \leq \rho(x) \leq M$ where m, M are positive constants, show that

$$\frac{\pi}{\sqrt{M}} \le \omega_1 \le \frac{\pi}{\sqrt{m}}.$$

Does this result make sense physically?

4. Consider the Volterra integral operator $K:L^2(0,1)\to L^2(0,1)$ defined by

$$Ku(x) = \int_0^x u(y) \, dy, \qquad 0 < x < 1$$

Show that the integral equation $Ku = \lambda u$ has no nonzero solutions for any $\lambda \in \mathbb{C}$, meaning that K has no eigenvalues. Why doesn't this contradict the spectral theorem for compact (or Hilbert-Schmidt) self-adjoint operators?

5. Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded region, and define an operator L by

$$Lu = -\nabla \cdot (p\nabla u) + qu$$

where p, q are smooth functions on $\bar{\Omega}$. Show that

$$\int_{\Omega} uLv \, dx = \int_{\Omega} vLu \, dx$$

for all functions $u, v : \Omega \to \mathbb{R}$ that vanish on the boundary $\partial \Omega$, meaning that L with Dirichlet BCs is formally self-adjoint.

6. Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded region, Consider the Neumann BVP

$$-\Delta u = f(x)$$
 $x \in \Omega$,
 $\frac{\partial u}{\partial n} = g(x)$ $x \in \partial \Omega$.

(a) Show that a solution can only exist if

$$\int_{\Omega} f dx + \int_{\partial \Omega} g dS = 0$$

Give a physical interpretation of this result in terms of heat flow.

(b) If a solution exists, show that it is unique up to an arbitrary additive constant.