SAMPLE FINAL QUESTIONS
Math 207B, Winter 2012
Brief Solutions

1. Find an explicit expression for the Green’s function for the problem

—u" +u=f(z), 0<z<l1
£L0)=0,  u(1)=0.

Write down the Green’s function representation of the solution for u(x).

Solution

e Homogeneous solutions that satisfy the BCs at the left and right end-
points are
ui(x) = coshx, us(x) = cosh(1 — x)

with Wronskian —sinh 1, so the Green’s function is

Gz €) coshz cosh(l —¢)/sinh1 0 <z <¢,
x,§) =
cosh&cosh(l —x)/sinh1l ¢ <z <1.

e The Green’s function representation of the solution is

u(z) = /0 G, €)(€) de.



2. Use separation of variables and Fourier series to solve the following IBVP
for the Schrodinger equation for the complex-valued function ¢ (z, t)

Wy = — Ve, O<z <1
¥(0,t) =0, ¥(1,t) =0,
U(x,0) = f(x)

where f € L*(0,1) is given initial data. Show from your solution that

1 1
/|w(x,t)|2dx=/ |f(x)]>de  forallt € R.
0 0

Solution

e The solution is

P(x,t) = Z cne” ™ ™ sin(nr)
n=1

where .
Cp = 2/0 f(z)sin(nmrz) dx.
e By Parseval’s theorem, and the fact that |[e~®| = 1, we have for any
t € R that
' 2 RS —in2n2t|?
/0 [(z,t)|" de = 5; Cpe

=1

I, =
:§;|0n|

= [1swpar



3. After non-dimensionalization, the displacement u(z) of a non-uniform
string, with density p(z), fixed at each end and vibrating with frequency w
satisfies the EVP

—u" = \p(2)u, 0<az<l,
u(0) =0, u(1) =0

where A\ = w?. The fundamental frequency of the string is w; = 1/\;, where
A = )\ is the smallest eigenvalue. If m < p(z) < M where m, M are positive

constants, show that
T
——<w <

VM ~

Does this result make sense physically?

\/_

Solution

e The Rayleigh quotient for the minimum eigenvalue is

A\ — min folu’(m)Zda:

u70 f p(x)u(z)? dx

e The Rayleigh quotient for the minimum eigenvalue p; of the problem
with constant density pg

—u" = ppou, 0<z<l,
u(0) =0, u(l)=0
is .
Jo v'(x)* d
= min —7>———
u#0 f POU de
In this case, we have an explicit solution for the minimum eigenvalue

7TQ

m1r = —
Po

with eigenfunction sin(mx).



If p(z) > m for all z € [0, 1] then (taking py = m)

1 1
/ p(x)u(r)? dr 2/ mu(x)?* dv
0 0
for every function u(x), so

fol ' (x)? do < fol v (z)? dx |
I p(@yu(x)?de ~ [ mu(x)? do

It follows that A\; < uq, or

T
w) < ——

NGD

If p(x) < M for all z € [0, 1] then (taking py = M)

1 1
/ p(x)u(x)? dx S/ Mu(z)? dx
0 0
for every function u(z), so

Jow(@Pde _ fyu'(a)da

I p(ayu(e)2de = [} Mu(w)?dz’

It follows that Ay > g, or

wlZ—\;TM

The result states that the fundamental frequency of a nonuniform string
is greater than that of a heavier uniform string and less than that of a
lighter uniform string, which is what one would expect physically.



4. Consider the Volterra integral operator K : L?(0,1) — L?(0,1) defined
by

Ku(:v):/ u(y) dy, O<z<l
0

Show that the integral equation Ku = Au has no nonzero solutions for any
A € C, meaning that K has no eigenvalues. Why doesn’t this contradict the
spectral theorem for compact (or Hilbert-Schmidt) self-adjoint operators?

Solution
o I[f A\=0, then Ku =0 and
u=(Ku) =0,
so 0 is not an eigenvalue of K.

o If A\ # 0, then differentiating the equation Ku = A\u, and also setting
x = 0 in the integral equation, we get

A = u, u(0) = 0.
The general solution of the ODE is
u(x) = ce®’.
The IC implies that ¢ = 0, so u = 0 and A is not an eigenvalue of K.

e The operator K is Hilbert-Schmidt, but it is not self-adjoint on L?(0, 1).
In fact, its adjoint is

(K u)(x) = / uly) dy

(Moral: The spectral theory of non-self-adjoint operators is not nearly
as nice as the theory for self-adjoint operators.)



5. Let 2 C R" be a smooth bounded region, and define an operator L by
Lu=-V-(pVu)+qu

where p, ¢ are smooth functions on Q. Show that

/uLvdac:/vLudx
0 Q

for all functions u, v : 2 — R that vanish on the boundary 02, meaning that
L with Dirichlet BCs is formally self-adjoint.

Solution
e We have the identity
uV - (pVv) — oV - (pVu) = V - (puVv — pvVu) .

To show this, we compute in Cartesian components (using the summa-
tion convention) that

0 v ou
V- (puVv — puVo) = 5 (puax' —pvax')

0 ov ou Ov
B “axi (paxi) +p8xi ox;
0 ou ov Ou

B U@xi (pﬁx) B paxi ox;

0 ov B 0 o)

=uV - (pVv) — vV - (pVu).

e Using this identity and the divergence theorem, we get

/Q (uLv —vLu) dx = /Q {=uV - (pVv) + quv + vV - (pVu) — quv} dx
=— /Q {uV - (pVv) — oV - (pVu)} dx

= —/ V- (puVv — puVv) dx
Q

ov ou
= _/asz (pu% —pv%> ds.



The integral over the boundary vanishes since u,v = 0 on 052, so

/uLvdx:/vLud:c
Q Q

e This is a multi-dimensional analog of the corresponding self-adjointness
identity for the one-dimensional Sturm-Liouville operator

Lu= —(pu) + qu

with Dirichlet BCs.



6. Let 2 C R™ be a smooth bounded region, Consider the Neumann BVP
—Au = f(x) x €,
g—z = g(z) x € 0f0.

(a) Show that a solution can only exist if

/fda:—l—/ gdS =0
Q o0

Give a physical interpretation of this result in terms of heat flow.

(b) If a solution exists, show that it is unique up to an arbitrary additive
constant.

Solution

e (a) Assume there is a solution u. Then, using the divergence theorem,

we get
ou
/fdx:—/Audx:— —dS:—/ gdS
Q Q a0 On a0

which gives the result.

e The problem describes the equilibrium temperature of a body with heat
source density f and prescribed heat flux g into the body through its
boundary. An equilibrium solution is only possible if the net rate at
which internal sources generate heat ([, f dz) is equal to the heat flux
out of the body (— [, gdS).

e (b) Suppose uq, uy are two solutions, and let v = u; — uy. Then, by
linearity,

Av =0 x €€,

ov

— =0 € 0.

on *
e According to Green’s first identity

/ (vAv + |Vo]?) dz = / V- (vVv) dx :/ v@ ds.
0 Q )

Qan



Using the equations for v in this identity, we get that

/ |Vu|* dz = 0.
0

It follows that Vv = 0 in {2, meaning that v is constant, so any two
solutions are equal up to a constant.



