
Solutions: Problem set 1
Math 207B, Winter 2012

1. If λ ≤ 0, show that there are no non-zero solutions for u(x) of the Sturm-
Liouville problem

− u′′ = λu 0 < x < 1,

u(0) = 0, u(1) = 0.

Solution

• If λ < 0, with λ = −k2 for k > 0 say, then the general solution of the
ODE is

u(x) = c1 cosh kx+ c2 sinh kx.

The BC u(0) = 0 implies that c1 = 0, and then the BC u(1) = 0
implies that c2 = 0, since sinh k 6= 0. Therefore u = 0 and λ is not an
eigenvalue.

• If λ = 0, then the general solution of the ODE is

u(x) = c1 + c2x

and the BCs imply that c1 = c2 = 0, so λ = 0 is not an eigenvalue.



2. Find all eigenvalues λn and eigenfunctions un(x) of the Sturm-Liouville
problem

− u′′ = λu 0 < x < 1,

u′(0) = 0, u′(1) = 0

with Neumann boundary conditions. Show that∫ 1

0

un(x)um(x) dx = 0

if n 6= m.

Solution

• The problem is self-adjoint so all eigenvalues must be real.

• One can check as in Problem 1 that if λ < 0, then the only solution is
u = 0 so λ is not an eigenvalue.

• If λ = 0, then u = constant is a solution, so λ0 = 0 is an eigenvalue
with eigenfunction u0 = 1.

• If λ = k2 > 0, then u(x) = cos kx is a solution of the ODE with
u′(0) = 0. This function satisfies the BC u′(1) = 0 if sin k = 0 or
k = nπ for n ∈ N.

• The eigenvalues are

λn = n2π2 for n = 0, 1, 2, . . .

with eigenfunctions

un(x) = cos(nπx) for n = 0, 1, 2, . . . .



3. Consider a wave equation

utt −
(
c20ux

)
x

+ q0u = 0

for u(x, t) where the wave speed c0(x) and the coefficient q0(x) depend on x.
Look for (possibly complex-valued) separable solutions of the form

u(x, t) = X(x)T (t).

Show that, up to linear superpositions, we can take

T (t) = e−iωt

for some constant ω ∈ C. Find the corresponding ODE satisfied by X in
that case. (Note that if a function of x is equal to a function of t, then the
functions must be constant.)

Solution

• Using u(x, t) = X(x)T (t) in the wave equation, we get

XT ′′ −
(
c20X

′)′ T + q0XT = 0.

Dividing this equation by XT and rearranging the result, we get that

T ′′

T
=

(c20X
′)
′

X
− q0.

• The left-hand side is function of t only and the right-hand side is a
function of x only, so each function must be constant, equal to λ = −ω2,
say, for some ω ∈ C.

• It follows that
T ′′ + ω2T = 0

so (if ω 6= 0)
T (t) = c1e

−iωt + c2e
iωt.

• The corresponding Sturm-Liouville ODE for X(x) is

−
(
c20X

′)′ + q0X = ω2X.



4. Define the Hermite polynomials Hn by

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

and let
φn(x) = e−x

2/2Hn(x)

where n = 0, 1, 2, 3, . . . . Show that φn is a solution of the Sturm-Liouville
problem

−φ′′n + x2φn = λnφn −∞ < x <∞,
φn(x)→ 0 as |x| → ∞

with eigenvalue
λn = 2n+ 1.

Hint: Let L be the linear operator

L = − d2

dx2
+ x2,

meaning that L acts on functions φ by

Lφ = −φ′′ + x2φ.

Define operators A, A∗ by

A =
d

dx
+ x, A∗ = − d

dx
+ x.

Show that
Aφn = 2nφn−1, A∗φn = φn+1 (1)

and
L = AA∗ − 1.

Solution

• Note that
(xu)′ = xu′ + u,

which means that
d

dx
x = x

d

dx
+ 1,



or [
d

dx
, x

]
=

d

dx
x− x d

dx
= 1.

Hence

AA∗ =

(
d

dx
+ x

)(
− d

dx
+ x

)
= − d2

dx2
− x d

dx
+

d

dx
x+ x2

= − d2

dx2
+ x2 + 1

= L+ 1.

• Assuming (1), we get that

Lφn = (AA∗ − 1)φn

= AA∗φn − φn

= Aφn+1 − φn

= 2(n+ 1)φn − φn

= (2n+ 1)φn,

which shows that φn is an eigenfunction of L with eigenvalue 2n+ 1.

• We have

φn(x) = (−1)nex
2/2 d

n

dxn

(
e−x

2
)
.

Hence

A∗φn = (−1)n
(
− d

dx
+ x

)[
ex

2/2 d
n

dxn

(
e−x

2
)]

= (−1)n+1 d

dx

[
ex

2/2 d
n

dxn

(
e−x

2
)]

+ (−1)nxex
2/2 d

n

dxn

(
e−x

2
)

= (−1)n+1ex
2/2 d

n+1

dxn+1

(
e−x

2
)

= φn+1.



• We have

Aφn = (−1)n
(
d

dx
+ x

)[
ex

2/2 d
n

dxn

(
e−x

2
)]

= (−1)nex
2/2

[
dn+1

dxn+1

(
e−x

2
)

+ 2x
dn

dxn

(
e−x

2
)]

.

Since derivatives of x of the order greater than or equal to two vanish,
the Leibnitz formula

dn

dxn
(fg) = f

dng

dxn
+ n

df

dx

dn−1g

dxn−1
+

1

2
n(n− 1)

d2f

dx2
dn−2g

dxn−2
+ · · ·+ dnf

dxn
g

implies that

dn+1

dxn+1

(
e−x

2
)

= −2
dn

dxn

(
xe−x

2
)

= −2

[
x
dn

dxn

(
e−x

2
)

+ n
dn−1

dxn−1

(
e−x

2
)]

.

It follows that

Aφn = 2n(−1)n−1ex
2/2 d

n−1

dxn−1

(
e−x

2
)

= 2nφn−1

which completes the proof of (1).


