PROBLEM SET 3 Math 207B, Winter 2012 Due: Fri., Feb. 3

1. Suppose that u(x) is a solution of the Sturm-Liouville problem with non-homogeneous ODE and BCs

$$-(pu')' + qu = f(x)$$
 $a < x < b,$
 $u(a) = A,$ $u(b) = B.$

Write

$$u(x) = A\left(\frac{b-x}{b-a}\right) + B\left(\frac{x-a}{b-a}\right) + v(x)$$

and show that \boldsymbol{v} satisfies a Sturm-Liouville problem of the form

$$-(pv')' + qv = g(x) \qquad a < x < b,$$

$$v(a) = 0, \qquad v(b) = 0$$

with homogeneous BCs.

2. Consider the nonhomogeneous Sturm-Liouville problem

$$-(pu')' + qu = \lambda u + f(x) \qquad a < x < b, u(a) = 0, \qquad u(b) = 0.$$

If λ is an eigenvalue with eigenfunction ϕ , show that the problem only has a solution if f satisfies

$$\int_{a}^{b} f\overline{\phi} \, dx = 0.$$

Under what conditions on f is the BVP

$$-u'' = f(x) 0 < x < 1,$$

$$u'(0) = 0, u'(1) = 0$$

solvable? How about the BVP

$$\begin{aligned} & -u'' = f(x) & 0 < x < 1, \\ & u'(0) = 0, & u'(1) = 1. \end{aligned}$$

3. Consider the weighted Sturm-Liouville eigenvalue problem

$$-(pu')' + qu = \lambda ru$$
 $a < x < b,$
 $u(a) = 0,$ $u(b) = 0$

where p(x), q(x), r(x) are given real-valued coefficient functions and r > 0. Let $L^2_r(a, b)$ denote the space of functions $f : [a, b] \to \mathbb{C}$ such that

$$\int_a^b r|f|^2\,dx < \infty$$

with weighted inner product

$$(f,g)_r = \int_a^b r f \overline{g} \, dx.$$

(a) If $\phi(x)$ is an eigenfunction with eigenvalue $\lambda \in \mathbb{C}$, show that $\lambda \in \mathbb{R}$ is real.

(b) If $\phi(x)$, $\psi(x)$ are eigenfunctions with distinct eigenvalues λ , μ show that they are orthogonal with respect to the weighted inner-product, meaning that

$$\int_{a}^{b} r\phi\overline{\psi}\,dx = 0.$$

(c) Suppose that the eigenvalue problem has a complete set of eigenfunctions $\{\phi_n : n = 1, 2, 3, ...\}$. If $f \in L^2_r(a, b)$, give an expression for the coefficients c_n in the eigenfunction expansion

$$f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x).$$

4. Use separation of variables to solve the following IBVP for u(x, t) for the wave equation:

$$u_{tt} = u_{xx} 0 < x < 1, u_x(0,t) = 0, u(1,t) = 0, u(x,0) = f(x), u_t(x,0) = g(x).$$