SOLUTIONS: PROBLEM SET 4
Math 207B, Winter 2012

1. (a) Consider the 2m-periodic function f(x;¢€) defined for € > 0 by

f(fv;e)z{l/€ Moo= flx+2me) = f(z;€).

0 if e <x<2m.’
Sketch the graph of f(x,€) on the real line. Compute its Fourier series
flase) = fale)e™.

(b) Define the 27-periodic d-function d,, or ‘0-comb’, by

op(z) = Z d(z — 2mn)

n=—oo

where 0(z) is d-function on the real line supported at x = 0. Draw a picture
of 6,. Show that a formal computation of the Fourier coefficients of 4, gives

1 .
dp(x) = By Z e,

n=—oo

(c) Show that you recover the Fourier series in (b) by taking the limit as
e — 07 of the Fourier series in (a).

Solution

e (a) For n # 0, we have

1 27 )
Jn= %/0 flx;e)e™™ dx
1 €

= % ; e dx
_ 1 —inz] €
 2mein [6 }0
1 —1ine
= 2rein (1 — e )

1 .
= ——sin <E> e ine/2
TEN 2



Similarly, for n = 0, we have

1 € 1
fo=— | do=—.

- 2me J, 27

e (b) We integrate over the period —m < x < 7, so that the singularities
in the J-functions are not at one of the endpoints. There is only one
singularity at x = 0 in this period, so

1 [7 , 1
- d(z)e "™ dr = —.
2 J_. 2m

dpn

e (c) Since sinf/0 — 1 as § — 0, we have

lim L sin <%> e~ me/2| = lim 1 sin(ne/2) (n6/2)6_m6/2 = x
=0 | men 2 =0 |21 ne/2 2

and we recover the result of (b).



2. Consider the 2m-periodic square wave S defined by

S(z) = S(x+2m) = S(x).

1 if0<z<m,
0 if—rmr<x<0.’

(a) Sketch the graph of S on the real line and explain why the (distributional)
derivative of S is given by

S/(l’) = 6p($) - 5p(x — )

where 0, is the periodic J-function from Problem 1.

(b) Compute the Fourier series of S
S(x) = Z S,em.

(c) Show that the formal term-by-term derivative of this series agrees with
the Fourier series of 0,(z) — d,(z — ) from Problem 1.

Solution

e (a) The function S(z) is constant for x # nm, which differentiates to
zero. It has jump discontinuities of size 1 at even multiples of 7, which
contribute d,(z) to the derivative, and jump discontinuities of size —1
at odd multiples of 7, which contribute —d,(z — 7) to the derivative.

e (b) For n # 0, we have

1 [7 -
Sp = — S Mt
o) (x)e x
[ _.
= — e " dx
2 Jo
B 1 e—inx m
S 2m | —in |,
— 1— —inm
2min ( ‘ )
1 n
= 1= (=1"].

2min



For n = 0, we have
1 (7 1
So=— dr = —.
“Tor ), T2
Thus,

S(l‘) _ % + Z [1 — (_1)71] eimc.

2min
n#0

(The series converges pointwise to S(x) except where it has a jump
discontinuity, where it converges to the average value of 1/2. The con-
vergence is not uniform, however, and we get the Gibb’s phenomenon
at the jump discontinuities of S(z).)

e (c) Formal term-by-term differentiation gives

2w
n#0
1 < 1 .
- nr —1)"eine
2 27 (=1)%
n=-—00 n=-—00
_ i inT i in(z—m)
2w = 2m =

= 0p(x) — Op(z — ).

(The series can be understood as converging in the sense of distribu-
tions.)



3. Consider the non-homogeneous Sturm-Liouville problem

—u" =M+ f(x) 0<x<l,

u'(0) =0, u(l) =0 1)

where A\ = k? with k > 0 is a strictly positive constant.
(a) Give the eigenvalues ), and eigenfunctions ¢, (z) of the homogeneous
problem, n = 1,2,3, ..., which satisfy
—¢n =My O<z <1,
¢,(0) =0, (1) =0.
(b) Write out the eigenfunction expansion for the Green’s function G(x, &; A).

(b) Find an explicit expression for the Green’s function G(z,&; \) in terms
of appropriate solutions of the homogeneous equation. Show that your so-
lution has poles at the eigenvalues A = ), and that its residues give the
eigenfunctions.

Solution

e (a) The eigenvalues and orthonormal eigenfunctions are

O N (O

formn=1,2,3,....

e The bilinear eigenfunction expansion of the Green’s function G(x,§; \)

: s 2c0s[(n —1/2) wa] cos [(n — 1/2) 7]
Gl 6N =2 (n—1/2) 7% — A |

n=1
(By the Weierstrass M-test, this series converges uniformly for any
A € C that is not one of the eigenvalues \,,.)

(2)

e (b) The Green’s function satisfies

*G
— = = — 1
I3 AG +6(x — &) 0<z<l,
dG
%(0,5,)\)—0, G(1,& M) =0.

We will assume that A # 0. (See below for the case A = 0.)



e For 0 < x < &, we have

d*G dG

de = )‘Ga %(0757 >\) - 07

whose solution is
Gz, M) = A(& N) cos (\/Xx)

where A is a function of integration. (Here, we may choose either value
of the square-root.)

e For £ < x < 1, we have

d?G
da?

whose solution is
G(z,&)) = B(& M) sin (fm . x)) .
e To ensure that the Green’s function is continuous at x = £, we choose

A ) = Csin (VAT =€), B&A) = C(N)cos (VAE) |

N C'(A) cos \/_$> (\/X(l—f) if 0 <z <,
ot C(N) cos \/’g) (ﬁ(—x) ife<a<l.
= C(A) cos \/_x<> <\/X(1—$>)>
where

To = min(z,), - = max(z,£).
o The requirement that dG/dz jumps by —1 across z = ¢ implies that
—VAC(N) cos (\/Xg) cos (\/Xu _ g))
+VAC)sin (VA sin (VA(L - €)) = -1



or, by use of the addition formula for cosine,
VAC(A) cos VA = 1.

Hence ]
CA\) = ———
N = s v

Cos (\/X:c<) sin (\/X(l — a:>))
VAcos VA '

Note that sinz/z and cosz are analytic functions of 22 (their Taylor
series involve only even powers of z) so G depends on A, not VA, and
does not have a branch cut. Furthermore, GG is an analytic function of
A unless the denominator v/ cos v/A vanishes.

and

G(x,&N\) =

If cosv/A = 0, then VX = +(n — 1/2)7 and A = ), is an eigenvalue.
We show below that GG has simple poles at these values of A.

The point A = 0 is a removable singularity of G. Since sinz/z — 1 as
z — 0, we have

1—-¢ if0<z <,

lim G(x,&0) =1 -2 =
i G, &) > {1—x if ¢ << 1.

One can verify explicitly that this limit is the Green’s function G(z, &; 0).
Thus, G(z,&; ) is analytic at A = 0.
The residue of G at the simple pole A = A, is given by

Res G(z,& M) = lim (A —\,) G(z, & 0)

A=A A=A

= \/1>\_n Cos <\/)\_nx<> sin <\/)\_n(1 — m>)> ,\li,rf\ln Li\os_;%} :




By I’'Hospital’s rule, or Taylor expansion,
o] =2 s
= lim | ———
cos VAl A= Ld/dN(cos V)
= — lim 2vA
A= | sin v/
2V
sin v\,

lim
A=A

Hence,

., 2cos (VAnz<) sin (VAL (1 — z5))
/\Ei(?\i Gz, 64) = = sin v\, '

We have
sin (\/2(1 . x>)> — sin (\//\_n) cos <\/A_nx>>
P <\/>\_n> sin (\//\—nx>>
= sin (VA ) cos (V)

SO

,\Pi?\i G(z,&N) = —2cos (\/A_nx<> cos (\/)\_nx>) : (3)

e This result agrees with (2), which gives

Res G(z,&;\) = —2cos[(n — 1/2) mx] cos [(n — 1/2) w€].

A=An

In fact, we can read off the eigenfunctions v/2 cos (\/ )\na:) from the
expression (3) for the residue of the Green’s function G(z,&; \) at .



4. Consider the non-homogeneous Sturm-Liouville problem on the real line

—u" +u=f(z) — 00 < < 00,

(4)

u(z) =0 as x — 0o

where f(x) is compactly supported or decays to zero sufficiently rapidly as
T — to0.

(a) Show that the Greens function G(z,§) satisfying
d*G

_w“—G:d(l‘—f) —00 < x < 00,

G(z,6) — 0 as v — £00

is given by
1
G(z, &) = 56_‘x_5‘.

(b) Write down the Green’s function representation of the solution of (4).
Verify explicitly that it is a solution.

Solution

e (a) For z # &, the Green’s function satisfies the homogeneous equation
and the BC at the appropriate endpoint:

d°G

_W_'_G: —oo<x <€, G(z,§) = 0 asx — —o0,
d’G

_W_‘_G:O £ <x < oo, G(z,§) -0 asxz — oo.

It follows that

A&)e”  if —oo <z <&,

Gl 6) = {B(f)e‘“” if £ <z < o0.

where A, B are functions of integration.

e To ensure that G(z,¢) is continuous at x = &, we choose
A€)=ce™®, B =ce

where ¢ is a constant (as follows from the general theory).



e In order to obtain the d-function supported at &, we require that dG /dz
satisfies the jump condition

£,
T ,ee
where
dG dG dG
& — lim — — lim —
{Cng soet dx () xlil?— dx (,¢)

= —B(§)e™* — A(&)e*
= —2c.

Hence, ¢ = 1/2 and

2
1 ax— :
st if —oo < w <&,
lef=r jf e <z < o0
1

2

e (b) The Green’s function representation of the solution is

ue) =5 [ et (e de.

2 o

e Splitting up the integration interval, we can write this solution as

wa) =3 [ e OR@de g [ ere
5o [ en@dege [T et
We have
e [ ot —ererw - [ e

= @) — e / ") de

—0o0



and

T

& [6_1, /w G d&] — () _e—x.exf(a:)jte_x/ et f(€) d¢

2
dx —00 —00
x

= fe) — fla) te / £ F(€) de.

Similarly
d2
e

{ew | e dg} ——fla) - fa) e [T ete de

Adding these expressions, we get

" Lo [7 Lo [T
W= —f@) e [ @t e [ et de=—f@) b
which verifies explicitly that —u” +u = f(x).

To verify the boundary conditions, assume for simplicity that f(x) is
a continuous function with compact support, meaning that it vanishes
outside a finite interval [—a,a]. Then for x < a

/_ e£F(€) de = 0, / eEf(E)dE= A, A= / e~ f(6) d
so u(x) = (A/2)e”, and for x > a
/ £ F(€) dé = Be, / e Cf(€)dE =0, B= / £ () d

—00 x —a

so u(x) = (B/2)e~*. Hence, u(x) — 0 as © — +o0.



