
Solutions: Problem set 4
Math 207B, Winter 2012

1. (a) Consider the 2π-periodic function f(x; ε) defined for ε > 0 by

f(x; ε) =

{
1/ε if 0 < x < ε,

0 if ε < x < 2π.
, f(x+ 2π; ε) = f(x; ε).

Sketch the graph of f(x, ε) on the real line. Compute its Fourier series

f(x; ε) =
∞∑

n=−∞

fn(ε)einx.

(b) Define the 2π-periodic δ-function δp, or ‘δ-comb’, by

δp(x) =
∞∑

n=−∞

δ(x− 2πn)

where δ(x) is δ-function on the real line supported at x = 0. Draw a picture
of δp. Show that a formal computation of the Fourier coefficients of δp gives

δp(x) =
1

2π

∞∑
n=−∞

einx.

(c) Show that you recover the Fourier series in (b) by taking the limit as
ε→ 0+ of the Fourier series in (a).

Solution

• (a) For n 6= 0, we have

fn =
1

2π

∫ 2π

0

f(x; ε)e−inx dx

=
1

2πε

∫ ε

0

e−inx dx

= − 1

2πεin

[
e−inx

]ε
0

=
1

2πεin

(
1− e−inε

)
=

1

πεn
sin
(nε

2

)
e−inε/2.



Similarly, for n = 0, we have

f0 =
1

2πε

∫ ε

0

dx =
1

2π
.

• (b) We integrate over the period −π < x < π, so that the singularities
in the δ-functions are not at one of the endpoints. There is only one
singularity at x = 0 in this period, so

δpn =
1

2π

∫ π

−π
δ(x)e−inx dx =

1

2π
.

• (c) Since sin θ/θ → 1 as θ → 0, we have

lim
ε→0

[
1

πεn
sin
(nε

2

)
e−inε/2

]
= lim

ε→0

[
1

2π

sin (nε/2)

nε/2
e−inε/2

]
=

1

2π

and we recover the result of (b).



2. Consider the 2π-periodic square wave S defined by

S(x) =

{
1 if 0 < x < π,

0 if −π < x < 0.
, S(x+ 2π) = S(x).

(a) Sketch the graph of S on the real line and explain why the (distributional)
derivative of S is given by

S ′(x) = δp(x)− δp(x− π)

where δp is the periodic δ-function from Problem 1.

(b) Compute the Fourier series of S

S(x) =
∞∑

n=−∞

Sne
inx.

(c) Show that the formal term-by-term derivative of this series agrees with
the Fourier series of δp(x)− δp(x− π) from Problem 1.

Solution

• (a) The function S(x) is constant for x 6= nπ, which differentiates to
zero. It has jump discontinuities of size 1 at even multiples of π, which
contribute δp(x) to the derivative, and jump discontinuities of size −1
at odd multiples of π, which contribute −δp(x− π) to the derivative.

• (b) For n 6= 0, we have

Sn =
1

2π

∫ π

−π
S(x)e−inx dx

=
1

2π

∫ π

0

e−inx dx

=
1

2π

[
e−inx

−in

]π
0

=
1

2πin

(
1− e−inπ

)
=

1

2πin
[1− (−1)n] .



For n = 0, we have

S0 =
1

2π

∫ π

0

dx =
1

2
.

Thus,

S(x) =
1

2
+
∑
n6=0

[1− (−1)n]

2πin
einx.

(The series converges pointwise to S(x) except where it has a jump
discontinuity, where it converges to the average value of 1/2. The con-
vergence is not uniform, however, and we get the Gibb’s phenomenon
at the jump discontinuities of S(x).)

• (c) Formal term-by-term differentiation gives

S ′(x) =
1

2π

∑
n6=0

[1− (−1)n] einx

=
1

2π

∞∑
n=−∞

einx − 1

2π

∞∑
n=−∞

(−1)neinx

=
1

2π

∞∑
n=−∞

einx − 1

2π

∞∑
n=−∞

ein(x−π)

= δp(x)− δp(x− π).

(The series can be understood as converging in the sense of distribu-
tions.)



3. Consider the non-homogeneous Sturm-Liouville problem

− u′′ = λu+ f(x) 0 < x < 1,

u′(0) = 0, u(1) = 0
(1)

where λ = k2 with k > 0 is a strictly positive constant.

(a) Give the eigenvalues λn and eigenfunctions φn(x) of the homogeneous
problem, n = 1, 2, 3, . . . , which satisfy

− φ′′n = λnφn 0 < x < 1,

φ′n(0) = 0, φn(1) = 0.

(b) Write out the eigenfunction expansion for the Green’s function G(x, ξ;λ).

(b) Find an explicit expression for the Green’s function G(x, ξ;λ) in terms
of appropriate solutions of the homogeneous equation. Show that your so-
lution has poles at the eigenvalues λ = λn and that its residues give the
eigenfunctions.

Solution

• (a) The eigenvalues and orthonormal eigenfunctions are

λn =

[(
n− 1

2

)
π

]2
, φn(x) =

√
2 cos

[(
n− 1

2

)
πx

]
for n = 1, 2, 3, . . . .

• The bilinear eigenfunction expansion of the Green’s function G(x, ξ;λ)
is

G(x, ξ;λ) =
∞∑
n=1

2 cos [(n− 1/2) πx] cos [(n− 1/2)πξ]

[(n− 1/2) π]2 − λ
. (2)

(By the Weierstrass M -test, this series converges uniformly for any
λ ∈ C that is not one of the eigenvalues λn.)

• (b) The Green’s function satisfies

− d2G

dx2
= λG+ δ(x− ξ) 0 < x < 1,

dG

dx
(0, ξ;λ) = 0, G(1, ξ;λ) = 0.

We will assume that λ 6= 0. (See below for the case λ = 0.)



• For 0 < x < ξ, we have

−d
2G

dx2
= λG,

dG

dx
(0, ξ;λ) = 0,

whose solution is

G(x, ξ;λ) = A(ξ;λ) cos
(√

λx
)

where A is a function of integration. (Here, we may choose either value
of the square-root.)

• For ξ < x < 1, we have

−d
2G

dx2
= λG, G(1, ξ;λ) = 0,

whose solution is

G(x, ξ;λ) = B(ξ;λ) sin
(√

λ(1− x)
)
.

• To ensure that the Green’s function is continuous at x = ξ, we choose

A(ξ;λ) = C(λ) sin
(√

λ(1− ξ)
)
, B(ξ;λ) = C(λ) cos

(√
λξ
)
,

so

G(x, ξ;λ) =

C(λ) cos
(√

λx
)

sin
(√

λ(1− ξ)
)

if 0 < x < ξ,

C(λ) cos
(√

λξ
)

sin
(√

λ(1− x)
)

if ξ < x < 1.

= C(λ) cos
(√

λx<

)
sin
(√

λ(1− x>)
)

where
x< = min(x, ξ), x> = max(x, ξ).

• The requirement that dG/dx jumps by −1 across x = ξ implies that

−
√
λC(λ) cos

(√
λξ
)

cos
(√

λ(1− ξ)
)

+
√
λC(λ) sin

(√
λξ
)

sin
(√

λ(1− ξ)
)

= −1



or, by use of the addition formula for cosine,

√
λC(λ) cos

√
λ = 1.

Hence

C(λ) =
1√

λ cos
√
λ

and

G(x, ξ;λ) =
cos
(√

λx<

)
sin
(√

λ(1− x>)
)

√
λ cos

√
λ

.

• Note that sin z/z and cos z are analytic functions of z2 (their Taylor
series involve only even powers of z) so G depends on λ, not

√
λ, and

does not have a branch cut. Furthermore, G is an analytic function of
λ unless the denominator

√
λ cos

√
λ vanishes.

• If cos
√
λ = 0, then

√
λ = ±(n − 1/2)π and λ = λn is an eigenvalue.

We show below that G has simple poles at these values of λ.

• The point λ = 0 is a removable singularity of G. Since sin z/z → 1 as
z → 0, we have

lim
λ→0

G(x, ξ;λ) = 1− x> =

{
1− ξ if 0 < x < ξ,

1− x if ξ < x < 1.

One can verify explicitly that this limit is the Green’s functionG(x, ξ; 0).
Thus, G(x, ξ;λ) is analytic at λ = 0.

• The residue of G at the simple pole λ = λn is given by

Res
λ=λn

G(x, ξ;λ) = lim
λ→λn

(λ− λn)G(x, ξ;λ)

=
1√
λn

cos
(√

λnx<

)
sin
(√

λn(1− x>)
)

lim
λ→λn

[
λ− λn
cos
√
λ

]
.



By l’Hôspital’s rule, or Taylor expansion,

lim
λ→λn

[
λ− λn
cos
√
λ

]
= lim

λ→λn

[
1

d/dλ(cos
√
λ)

]
= − lim

λ→λn

[
2
√
λ

sin
√
λ

]

= − 2
√
λn

sin
√
λn
.

Hence,

Res
λ=λn

G(x, ξ;λ) = −
2 cos

(√
λnx<

)
sin
(√

λn(1− x>)
)

sin
√
λn

.

We have

sin
(√

λn(1− x>)
)

= sin
(√

λn

)
cos
(√

λnx>

)
− cos

(√
λn

)
sin
(√

λnx>

)
= sin

(√
λn

)
cos
(√

λnx>

)
so

Res
λ=λn

G(x, ξ;λ) = −2 cos
(√

λnx<

)
cos
(√

λnx>

)
. (3)

• This result agrees with (2), which gives

Res
λ=λn

G(x, ξ;λ) = −2 cos [(n− 1/2) πx] cos [(n− 1/2) πξ] .

In fact, we can read off the eigenfunctions
√

2 cos
(√

λnx
)

from the
expression (3) for the residue of the Green’s function G(x, ξ;λ) at λn.



4. Consider the non-homogeneous Sturm-Liouville problem on the real line

− u′′ + u = f(x) −∞ < x <∞,
u(x)→ 0 as x→ ±∞

(4)

where f(x) is compactly supported or decays to zero sufficiently rapidly as
x→ ±∞.

(a) Show that the Greens function G(x, ξ) satisfying

− d2G

dx2
+G = δ(x− ξ) −∞ < x <∞,

G(x, ξ)→ 0 as x→ ±∞

is given by

G(x, ξ) =
1

2
e−|x−ξ|.

(b) Write down the Green’s function representation of the solution of (4).
Verify explicitly that it is a solution.

Solution

• (a) For x 6= ξ, the Green’s function satisfies the homogeneous equation
and the BC at the appropriate endpoint:

− d2G

dx2
+G = 0 −∞ < x < ξ, G(x, ξ)→ 0 as x→ −∞,

− d2G

dx2
+G = 0 ξ < x <∞, G(x, ξ)→ 0 as x→∞.

It follows that

G(x, ξ) =

{
A(ξ)ex if −∞ < x < ξ,

B(ξ)e−x if ξ < x <∞.

where A, B are functions of integration.

• To ensure that G(x, ξ) is continuous at x = ξ, we choose

A(ξ) = ce−ξ, B(ξ) = ceξ

where c is a constant (as follows from the general theory).



• In order to obtain the δ-function supported at ξ, we require that dG/dx
satisfies the jump condition[

dG

dx

]
x=ξ

= −1

where [
dG

dx

]
x=ξ

= lim
x→ξ+

dG

dx
(x, ξ)− lim

x→ξ−

dG

dx
(x, ξ)

= −B(ξ)e−ξ − A(ξ)eξ

= −2c.

Hence, c = 1/2 and

G(x, ξ) =
1

2
exp(x<) exp(−x>)

=

{
1
2
ex−ξ if −∞ < x < ξ,

1
2
eξ−x if ξ < x <∞

=
1

2
e−|x−ξ|.

• (b) The Green’s function representation of the solution is

u(x) =
1

2

∫ ∞
−∞

e−|x−ξ|f(ξ) dξ.

• Splitting up the integration interval, we can write this solution as

u(x) =
1

2

∫ x

−∞
e−(x−ξ)f(ξ) dξ +

1

2

∫ ∞
x

ex−ξf(ξ) dξ

=
1

2
e−x

∫ x

−∞
eξf(ξ) dξ +

1

2
ex
∫ ∞
x

e−ξf(ξ) dξ.

We have

d

dx

[
e−x

∫ x

−∞
eξf(ξ) dξ

]
= e−x · exf(x)− e−x

∫ x

−∞
eξf(ξ) dξ

= f(x)− e−x
∫ x

−∞
eξf(ξ) dξ



and

d2

dx2

[
e−x

∫ x

−∞
eξf(ξ) dξ

]
= f ′(x)− e−x · exf(x) + e−x

∫ x

−∞
eξf(ξ) dξ

= f ′(x)− f(x) + e−x
∫ x

−∞
eξf(ξ) dξ.

Similarly

d2

dx2

[
ex
∫ ∞
x

e−ξf(ξ) dξ

]
= −f ′(x)− f(x) + ex

∫ ∞
x

e−ξf(ξ) dξ.

Adding these expressions, we get

u′′ = −f(x) +
1

2
e−x

∫ x

−∞
eξf(ξ) dξ +

1

2
ex
∫ ∞
x

e−ξf(ξ) dξ = −f(x) + u,

which verifies explicitly that −u′′ + u = f(x).

• To verify the boundary conditions, assume for simplicity that f(x) is
a continuous function with compact support, meaning that it vanishes
outside a finite interval [−a, a]. Then for x < a∫ x

−∞
eξf(ξ) dξ = 0,

∫ ∞
x

e−ξf(ξ) dξ = A, A =

∫ a

−a
e−ξf(ξ) dξ

so u(x) = (A/2)ex, and for x > a∫ x

−∞
eξf(ξ) dξ = Be−x,

∫ ∞
x

e−ξf(ξ) dξ = 0, B =

∫ a

−a
eξf(ξ) dξ

so u(x) = (B/2)e−x. Hence, u(x)→ 0 as x→ ±∞.


