
Solutions: Problem set 5
Math 207B, Winter 2012

1. Consider the non-homogeneous regular Sturm-Liouville problem

−[p(x)u′]′ + q(x)u = λu+ f(x), a < x < b, u(a) = u(b) = 0, (1)

with eigenvalues λ1 < λ2 < · · · < λn < . . . , and (real-valued) orthonormal
eigenfunctions {ϕ1, ϕ2, . . . , ϕn, . . . }. Let Pn : L2(a, b) → L2(a, b) denote the
projection onto the orthogonal complement of the nth eigenspace, defined by

Pnf(x) = f(x)− (f, ϕn)ϕn(x).

(a) Suppose that λ = λn in (1). If (f, ϕn) = 0, show that a solution of (1) is
given by

u(x) =

∫ b

a

G(x, ξ;λn)f(ξ) dξ, G(x, ξ;λn) =
∑
k ̸=n

ϕk(x)ϕk(ξ)

λk − λn

. (2)

Is this solution unique? (G is called the modified Green’s function.)

(b) For arbitrary f ∈ L2(a, b) show that u(x) defined in (2) is the unique
solution of the following problem:

− [p(x)u′]′ + q(x)u = λnu+ Pnf(x), a < x < b,

u(a) = 0, u(b) = 0, Pnu = u.

(c) Compute the modified Green’s function G(x, ξ;λn) for the problem

− u′′ = λnu+ f(x)− 2

(∫ 1

0

f(ξ) cos(nπξ dξ

)
cos(nπx), 0 < x < 1,

u′(0) = 0, u′(1) = 0,

∫ 1

0

u(x) cos(nπx) dξ = 0

(3)

in terms of solutions of the homogeneous equation, where λn = n2π2 for
n = 0, 1, 2, . . . .



Solution

• (a) Write (1) as (L− λI)u = f where

L = − d

dx

[
p(x)

d

dx

]
+ q(x).

Expanding u, f as

u(x) =
∞∑
k=1

ckϕk(x), f(x) =
∞∑
k=1

fkϕk(x),

where

fk = (f, ϕk) =

∫ b

a

f(x)ϕk(x) dx,

and using Lϕk = λkϕk, we get that

(L− λI)u =
∞∑
k=1

(λk − λ) ckϕk(x).

Hence, (L− λnI)u = f if and only if

(λk − λn) ck = fk for k = 1, 2, 3, . . . .

• A solution for u exists if and only if fn = 0, or (f, ϕn) = 0. In that
case, the general solution is

u(x) =
∑
k ̸=n

fk
λk − λn

ϕk(x) + cϕn(x)

where c is an arbitrary constant. If a solution exists it is not unique
(we can add an arbitrary solution of the homogeneous equation) but
there is a unique solution u such that (u, ϕn) = 0, which implies that
c = 0.

• If c = 0, we can write this solution as

u(x) =
∑
k ̸=n

fk
λk − λn

ϕk(x)

=
∑
k ̸=n

1

λk − λn

[∫ b

a

f(ξ)ϕk(ξ) dξ

]
ϕk(x)

=

∫ b

a

[∑
k ̸=n

ϕk(x)ϕk(ξ)

λk − λn

]
f(ξ) dξ,



which gives the Green’s function representation in (2).

• (b) This follows immediately from the discussion above. The operator
(L− λnI)

+, given by

(L− λnI)
+f(x) =

∫ b

a

G(x, ξ;λn)f(ξ) dξ,

in which we project both f and u onto the subspace orthogonal to
the eigenfunction provides a generalization of the inverse to a singular
problem. It is sometime referred to as a pseudoinverse, or Moore-
Penrose pseudoinverse. Note that G is a symmetric function of (x, ξ),
so (L− λnI)

+ is self-adjoint.

• (c) The eigenvalues of this problem are

λn = n2π2, n = 0, 1, 2, 3, . . .

with orthonormal eigenfunctions

ϕ0(x) = 1, ϕn(x) =
√
2 cos(nπx) = 1, 2, 3, . . . .

• The modified Green’s function G(x, ξ;λn), with eigenfunction expan-
sion (2), satisfies

− d2G

d2x
= λnG+ Pnδ(x− ξ), 0 < x < 1,

dG

dx
(0, ξ;λn) = 0,

dG

dx
(1, ξ;λn) = 0,∫ 1

0

G(x, ξ;λn)ϕn(x) dx = 0.

• Consider first the case n = 0, with λ0 = 0 and ϕ0 = 1. Then

P0δ(x− ξ) = δ(x− ξ)−
(∫ 1

0

δ(x− ξ) · 1 dx
)
· 1

= δ(x− ξ)− 1,



and G(x, ξ; 0) satisfies

− d2G

d2x
= δ(x− ξ)− 1, 0 < x < 1,

dG

dx
(0, ξ; 0) = 0,

dG

dx
(1, ξ; 0) = 0,∫ 1

0

G(x, ξ; 0) dx = 0.

• For 0 < x < ξ, we have

−d2G

d2x
= −1,

dG

dx
(0, ξ; 0) = 0,

whose general solution is

G(x, ξ; 0) =
1

2
x2 + A(ξ)

where A(ξ) is a function of integration.

• For ξ < x < 1, we have

−d2G

d2x
= −1,

dG

dx
(1, ξ; 0) = 0,

whose general solution is

G(x, ξ; 0) =
1

2
(1− x)2 +B(ξ).

• The continuity of G at x = ξ implies that

A(ξ) =
1

2
(1− ξ)2 + C(ξ), B(ξ) =

1

2
ξ2 + C(ξ)

where C(ξ) is an arbitrary function of ξ. Hence

G(x, ξ; 0) =

{
1
2
x2 + 1

2
(1− ξ)2 + C(ξ) if 0 < x < ξ,

1
2
ξ2 + 1

2
(1− x)2 + C(ξ) if ξ < x < 1.



• Note that G automatically satisfies the correct jump condition[
dG

dx

]
x=ξ

= −(1− ξ)− ξ = −1,

which is a consequence of projecting the δ-function onto the range of
solvable right-hand sides.

• To determine the arbitrary function C(ξ), we impose the orthogonality

condition
∫ 1

0
Gdx = 0. We have∫ 1

0

G(x, ξ; 0) dx

=
1

2

∫ ξ

0

[
x2 + (1− ξ)2

]
dx+

1

2

∫ 1

ξ

[
ξ2 + (1− x)2

]
dx+ C(ξ)

=
1

2

[
1

3
x3 + x(1− ξ)2

]ξ
0

− 1

2

[
(1− x)ξ2 +

1

3
(1− x)3

]1
ξ

+ C(ξ)

=
1

6
ξ3 +

1

2
ξ(1− ξ)2 +

1

2
(1− ξ)ξ2 +

1

6
(1− ξ)3 + C(ξ)

=
1

6
+ C(ξ),

so we take C = −1/6. The modified Green’s function is therefore given
by

G(x, ξ; 0) =

{
1
2
x2 + 1

2
(1− ξ)2 − 1

6
if 0 < x < ξ,

1
2
ξ2 + 1

2
(1− x)2 − 1

6
if ξ < x < 1.

=
1

2

[
x2
< + (1− x>)

2 − 1

3

]
.

• The case n ≥ 1, with

λn = n2π2, ϕn(x) =
√
2 cos(nπx)

is analogous to n = 0. We have

Pnδ(x− ξ) = δ(x− ξ)− 2 cos(nπx) cos(nπξ)



and G(x, ξ;λn) satisfies

− d2G

d2x
= n2π2G+ δ(x− ξ)− 2 cos(nπx) cos(nπξ), 0 < x < 1,

dG

dx
(0, ξ;λn) = 0,

dG

dx
(1, ξ;λn) = 0,∫ 1

0

G(x, ξ;λn) cos(nπx) dx = 0.

• For 0 < x < ξ, we have

−d2G

d2x
= n2π2G− 2 cos(nπx) cos(nπξ),

dG

dx
(0, ξ; 0) = 0,

and for ξ < x < 1, we have

−d2G

d2x
= n2π2G− 2 cos(nπx) cos(nπξ),

dG

dx
(1, ξ; 0) = 0.

• A fundamental pair of solutions of the homogeneous ODE

−d2G

dx2
= n2π2G

is {cos(nπx), sin(nπx)}. A particular solution of the nonhomogeneous
ODE

−d2G

d2x
= n2π2G− 2 cos(nπx) cos(nπξ),

which is forced by a resonant term proportional to a solution cos(nπx)
of the homogeneous equation, is

1

nπ
x sin(nπx) cos(nπξ).

Superposing this particular solution with a solution of the homogeneous
equation, we find that the most general solution of these ODEs for G
that satisfies the appropriate boundary conditions is

G(x, ξ;λn) =
1

nπ
x sin(nπx) cos(nπξ)

+ A(ξ) cos(nπx) if 0 < x < ξ,

G(x, ξ;λn) =
1

nπ
x sin(nπx) cos(nπξ)− 1

nπ
sin(nπx) cos(nπξ)

+B(ξ) cos(nπx) if ξ < x < 1

where A(ξ), B(ξ) are arbitrary functions of integration.



• The continuity of G at x = ξ implies that

B(ξ)− A(ξ) =
1

nπ
sin(nπξ).

The jump condition [
dG

dx

]
x=ξ

= −1

is then satisfied automatically, as in the case n = 0.

• It follows that

G(x, ξ;λn) =
1

nπ
x sin(nπx) cos(nπξ)− 1

nπ
cos(nπx) sin(nπξ)

+ C(ξ) cos(nπx) if 0 < x < ξ,

G(x, ξ;λn) =
1

nπ
x sin(nπx) cos(nπξ)− 1

nπ
sin(nπx) cos(nπξ)

+ C(ξ) cos(nπx) if ξ < x < 1

where C(ξ) is an arbitrary function.

• To determine C, we impose the orthogonality condition
∫ 1

0
Gϕn dx = 0.

After some algebra, we find that∫ 1

0

G(x, ξ;λn) cos(nπx) dx =
1

2
C(ξ)− 1

2nπ
ξ sin(nπξ)− 1

4n2π2
cos(nπξ).

It follows that

C(ξ) =
1

nπ
ξ sin(nπξ) +

1

2n2π2
cos(nπξ).

• The modified Green’s function is therefore given by

G(x, ξ;λn) =
1

nπ
x sin(nπx) cos(nπξ) +

1

nπ
ξ cos(nπx) sin(nπξ)

− 1

nπ
cos(nπx) sin(nπξ) +

1

2n2π2
cos(nπx) cos(nπξ)

if 0 < x < ξ, and

G(x, ξ;λn) =
1

nπ
x sin(nπx) cos(nπξ) +

1

nπ
ξ cos(nπx) sin(nπξ)

− 1

nπ
sin(nπx) cos(nπξ) +

1

2n2π2
cos(nπx) cos(nπξ)

if ξ < x < 1.



• Equivalently,

G(x, ξ;λn) =
1

nπ
x< sin(nπx<) cos(nπx>) +

1

nπ
x> cos(nπx<) sin(nπx>)

− 1

nπ
cos(nπx<) sin(nπx>) +

1

2n2π2
cos(nπx<) cos(nπx>).

• The solution of (3) then has the Green’s function representation

u(x) =

∫ 1

0

G(x, ξ;λn)f(ξ) dξ.



2. Consider the functional J : X → R defined by

J(u) =

∫ b

a

[
1

2
(u′′)2 +

1

2
qu2 − fu

]
dx

where f, q : [a, b] → R are continuous functions and X = H2
0 (a, b) is the

Sobolev space

X =
{
u : u, u′, u′′ ∈ L2(a, b), u(a) = u′(a) = u(b) = u′(b) = 0

}
Derive the Euler-Lagrange equation satisfied by a smooth minimizer u ∈
C4[a, b] of J . What is the variational derivative δJ/δu of J?

Solution

• We compute the directional derivative of J at u ∈ X in the direction
h ∈ X:

d

dt
J(u+ th)

∣∣∣∣
t=0

=
d

dt

∫ b

a

[
1

2
(u′′ + th′′)2 +

1

2
q(u+ th)2 − f(u+ th)

]
dx

∣∣∣∣
t=0

=

∫ b

a

(u′′h′′ + quh− fh) dx.

• If u ∈ C4[a, b] is smooth, then we can integrate by parts in this expres-
sion to get

d

dt
J(u+ th)

∣∣∣∣
t=0

=

∫ b

a

(u′′′′ + qu− f)h dx.

The boundary terms vanish since h ∈ X.

• The variational derivative δJ/δu is defined by the identity

d

dt
J(u+ th)

∣∣∣∣
t=0

=

∫ b

a

δJ

δu
h dx,

so
δJ

δu
= u′′′′ + qu− f.



• If J attains a minimum at u ∈ X, then for any h ∈ X the function
J(u+ th) of t ∈ R attains a minimum at t = 0, so that

d

dt
J(u+ th)

∣∣∣∣
t=0

= 0 for every h ∈ X.

If u ∈ C4[a, b] is smooth, it follows that∫ b

a

δJ

δu
h dx = 0 for every h ∈ X,

and the duBois-Reymond lemma implies that δJ/δu = 0, or

u′′′′ + qu = f.

This forth-order ODE is the Euler-Lagrange equation for the functional
J(u).



3. Consider the regular weighted Sturm-Liouville eigenvalue problem

− (pu′)′ + qu = λru a < x < b,

u(a) = 0, u(b) = 0

where p(x), q(x), r(x) are smooth real-valued functions and p, r > 0.

(a) If the eigenvalues are λ1 < λ2 < . . . , λn < . . . , show that the minimum
eigenvalue λ1 is given by

λ1 = min
u∈H1

0 (a,b)
R(u), R(u) =

∫ b

a
[p(u′)2 + qu2] dx∫ b

a
ru2 dx

.

(b) Consider the (singular) Sturm-Liouville problem

−(xu′)′ = λxu 0 < x < 1

xu′ → 0 as x → 0, u(1) = 0

with Rayleigh quotient

R(u) =

∫ 1

0
x(u′)2 dx∫ 1

0
xu2 dx

.

Assuming the result in (a) holds for this singular problem, use a trial function
of the form

u(x) = (1− x)(ax+ b)

to obtain an upper bound for the minimum eigenvalue λ1. Compare your
answer with the numerical result λ1 = 5.783 . . . .

Solution

• (a) For n = 1, 2, . . . , let ϕn(x) denote (real-valued) eigenfunctions with
eigenvalues λn such that

−(pϕ′
n)

′ + qϕn = λnrϕn.

The eigenfunctions are orthogonal with respect to the weighted inner
product

(u, v)r =

∫ b

a

ruv dx.

We normalize them so that∫ b

a

rϕnϕm dx =

{
1 if n = m,

0 if n ̸= m.



• These eigenfunctions form a complete orthonormal set in the weighted
space L2

r(a, b). We expand u as

u(x) =
∑
n=1

cnϕn(x), cn =

∫ b

a

ruϕn dx.

Then ∫ b

a

ru2 =

∫ b

a

r

(
∞∑
n=1

cnϕn

)(
∞∑

m=1

cmϕm

)
dx

=
∞∑
n=1

∞∑
m=1

cncm

∫ b

a

rϕnϕm dx

=
∞∑
n=1

c2n.

• Also, integrating by parts,∫ b

a

[
p(u′)2 + qu2

]
dx =

∫ b

a

[
−(pu′)′u+ qu2

]
dx

=

∫ b

a

[−(pu′)′ + qu]u dx.

We have
−(pu′)′ + qu =

∑
n=1

λncnrϕn(x),

so ∫ b

a

[
p(u′)2 + qu2

]
dx =

∫ b

a

r

(
∞∑
n=1

λncnrϕn

)(
∞∑

m=1

cmϕm

)
dx

=
∞∑
n=1

λnc
2
n.

• It follows that the Rayleigh quotient is given by

R(u) =

∑∞
n=1 λnc

2
n∑∞

n=1 c
2
n

.

This is minimized when c1 ̸= 0 and cn = 0 for n ≥ 2, and

minR(u) = λ1.



• (b) If u(x) = (1− x)(ax+ b), we compute that∫ 1

0

x(u′)2 dx =
1

6
a2 +

1

3
ab+

1

2
b2,∫ 1

0

xu2 dx =
1

60
a2 +

1

15
ab+

1

12
b2.

Hence, for this trial function, the Rayleigh quotient is

R(u) =

∫ 1

0
x(u′)2 dx∫ 1

0
xu2 dx

= 10

[
a2 + 2ab+ 3b2

a2 + 4ab+ 5b2

]
.

We have R = 6 for a = 0 and R = 10 for b = 0, which gives an upper
bound λ1 ≤ 6.

• If b ̸= 0, we can write R = R(c) where c = a/b and

R(c) = 10

[
c2 + 2c+ 3

c2 + 4c+ 5

]
.

(See Figure 1 for a plot of R(c).) We have

R′(c) = 20

[
c2 + 2c− 1

(c2 + 4c+ 5)2

]
,

and R′(c) = 0 at c = ±
√
2 − 1. The minimum of R is attained at

c =
√
2− 1, where

R(
√
2− 1) = 10

(
2−

√
2
)
.

It follows that
λ1 ≤ 10

(
2−

√
2
)
≤ 5.86.

We could obtain sharper upper bounds by using higher-dimensional
spaces of trial functions e.g. u(x) = (1− x)(ax2 + bx+ c).
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Figure 1: Plot of Rayleigh quotient R.


