SOLUTIONS: PROBLEM SET 5
Math 207B, Winter 2012

1. Consider the non-homogeneous regular Sturm-Liouville problem
—p@)u] +g@)u= A+ f(z), a<z<b  wula)=ud)=0 (1)

with eigenvalues \; < Ay < -+ < A\, < ..., and (real-valued) orthonormal
eigenfunctions {¢y, o, ..., ép,...}. Let P, : L*(a,b) — L?*(a,b) denote the
projection onto the orthogonal complement of the nth eigenspace, defined by

Buf(x) = f(x) = (f, ¢n) ¢u(2).
(a) Suppose that A = A, in (1). If (f, ¢,) = 0, show that a solution of (1) is
given by

b
ue) = [ Glren© e o) =Y BHHED
a k#£n k n

Is this solution unique? (G is called the modified Green’s function.)

(b) For arbitrary f € L?*(a,b) show that u(z) defined in (2) is the unique
solution of the following problem:

— (2] + q(z)u = Au+ P f(z), a<z<b,
u(a) =0, u(b) =0, Pyu=u.

(c¢) Compute the modified Green’s function G(x,&; A,,) for the problem

—u" =N+ f(z) -2 (/ f(&) cos(nmé d§> cos(nmz), 0<z <1,
" (3)
u'(0) =0, u'(1) =0, /o u(x) cos(nmz) d§ =0

in terms of solutions of the homogeneous equation, where \, = n?n? for
n=0,1,2,....



Solution
e (a) Write (1) as (L — A )u = f where
d
L= o] +ato)

Expanding u, f as
k=1 k=1

where ,
fi="(f,0%) = / f(x)pp(x) dz,
and using Lo, = \i¢p, we get that

(L= ADu =" (A —A) cxu(x).
k=1
Hence, (L — A\, I)u = f if and only if

(/\k—)\n)ck:fk fork:1,2,3,....

e A solution for u exists if and only if f, = 0, or (f,#,) = 0. In that
case, the general solution is

Ji
u(x) k;ﬂ — O () + chn(z)
where ¢ is an arbitrary constant. If a solution exists it is not unique
(we can add an arbitrary solution of the homogeneous equation) but
there is a unique solution u such that (u, ¢,) = 0, which implies that

c=0.

e If ¢ =0, we can write this solution as

ulw) = Y s

k#n

S [ 1000 €] onto

_ ’ or()Pr(§)
-/ [;W] (&) e



which gives the Green’s function representation in (2).
e (b) This follows immediately from the discussion above. The operator

(L — N\, )%, given by

b
(L= MI)*f(x) = / G, & M) F(€) de,

in which we project both f and u onto the subspace orthogonal to
the eigenfunction provides a generalization of the inverse to a singular
problem. It is sometime referred to as a pseudoinverse, or Moore-
Penrose pseudoinverse. Note that G is a symmetric function of (z,§),
so (L — A\, I)* is self-adjoint.

e (c) The eigenvalues of this problem are
N\, = n?m?, n=0,1,2,3,...
with orthonormal eigenfunctions

do(x) =1, én(x) =+V2cos(nmz) =1,2,3,....

e The modified Green’s function G(z,§;\,), with eigenfunction expan-
sion (2), satisfies

d*G
dG dG
%(0,57)\”)—0 a(l,f,)\n)—o

/1 G(z,& M) pn(z) dx = 0.
0

e Consider first the case n = 0, with \y = 0 and ¢y = 1. Then

Pob(a — €) = 6(z — &) (/5:5— 1da:)~

=d(x—¢&) —1,



and G(x,&;0) satisfies

d*G
dG dG
Z0,60) = d(L&®=Q
/G:c&O
e For 0 < x < &, we have
d*G dG
_%__17 %(07570)_07

whose general solution is

G(r,6:0) = 52 + A(€)

where A(§) is a function of integration.
e For ¢ < x <1, we have

d*G dG
_%__17 %(17§70)_0a

whose general solution is
1 2
Glz,&0) = 5(1 - )+ B).
e The continuity of G at x = ¢ implies that

A© =50-6 40O, B =5 +0

where C(€) is an arbitrary function of . Hence

1,.2 1 2 :
o Jart (=T ) i<z <,
G(x,g,())_{%§2+%(1_x)2+0(8 if ¢ <o < 1.



e Note that G automatically satisfies the correct jump condition
dG
{d$}$§ (1-¢-¢ 7

which is a consequence of projecting the d-function onto the range of
solvable right-hand sides.

e To determine the arbitrary function C(€), we impose the orthogonality
condition fol G dx = 0. We have

1
/ G(z,&;0)dx
01 .

:5/ [2* + (1= ¢)°] dx%/g [+ (1 —2)*] dz+C(¢)

0

¢ 1
=3 |57 at-ep] g a-ne s a-ap] e

0 3
Lg 1 2 1 g, 1 3
= S+ SE1— €+ 5(1- € + £ (1- € + C(¢)
1
=—-+C
so we take C' = —1/6. The modified Green’s function is therefore given
by
12010 21 jf
Glr.6:0) = ?x2+12( 6)2 (1), ?0<3:<£,
¢+ s(1—2) -5 ifE<o <l
1 1

Ap = n?m?, dn(x) = V2 cos(nmx)
is analogous to n = 0. We have

P.6(x — &) = d(x — &) — 2cos(nmx) cos(nmf)



and G(z,&; \,) satisfies

2
- C;TG =n 7T2G+5($ — &) — 2cos(nmz) cos(nmé), 0<x <1,
dG dG
T _
Toea =0, Taern)=0

1
/ G(z,&; M) cos(nmax) dx = 0.
0

For 0 < x < &, we have
d*G dG

— oy =" 212G — 2 cos(nmx) cos(nmé), o —(0,&;0) =0,
and for £ < x < 1, we have
d*G 9 dG
_@e _9 7(1,6:0) = 0.
o = n*1?G — 2 cos(nmx) cos(nwé), dq:( ,6,0)=0
A fundamental pair of solutions of the homogeneous ODE
d*G 9 o
T =T G

is {cos(nmx),sin(nrz)}. A particular solution of the nonhomogeneous
ODE e
= 212G — 2 cos(nmx) cos(nwé),
which is forced by a resonant term proportional to a solution cos(nmx)
of the homogeneous equation, is
r .

—ux sin(nmx) cos(nmwf).

s sin(nrz) cos(nné)
Superposing this particular solution with a solution of the homogeneous
equation, we find that the most general solution of these ODEs for GG
that satisfies the appropriate boundary conditions is

G(z,& M) = %x sin(nmzx) cos(nmf)
A(&) cos(nmz) 1f 0<z <,
G(z,& M) = %aj sin(nmzx) cos(nmé) — — sm(mra:) cos(nmf)

+ B(&) cos(nmx) 1f§<x< 1
where A(), B(&) are arbitrary functions of integration.



The continuity of G at x = £ implies that

B() — A(§) = — sin(nre).

2] -
de | ,_¢

is then satisfied automatically, as in the case n = 0.

The jump condition

It follows that
1

G(r,€: M) = ~—sin(nz) cos(nrt) — - cos(nre) sin(nc)
+ C(&) cos(nmx) if0<x<g,

Gla,:0,) = %x sin(nz) cos(nmé) — % sin(nmz) cos(nme)
+ C(&) cos(nmx) ife<r<1

where C'(§) is an arbitrary function.

To determine C', we impose the orthogonality condition fol G¢,dr = 0.
After some algebra, we find that

/1 G(x, & \y) cos(nmz) do = lC’({')—LS sin(nmw) —
0

2 2n 4n2m2 cos(nm).

It follows that
1
C(§) = —¢&sin(nré) +
nw

S22 cos(nm§).

The modified Green’s function is therefore given by
1 1
G s An) = —xsi — '
(z,& M) — sin(nmz) cos(nmwf) + mrg cos(nmx) sin(nw)
1

- cos(nmx) sin(nwf) + 322 cos(nmz) cos(nmé)

if0 <z <& and
G(z,&\,) = im sin(nmz) cos(nmwf) + iﬁ cos(nmx) sin(nmé)
nm nm
L sin(nmx) cos(nm) + —— cos(nmr) cos(nmf)

nm 2n2m
ifé<x <l



e Equivalently,

1 1
G(z,& M) = s sin(nrx.) cos(nmxs) + T cos(nmr.)sin(nrxs)

1
- cos(nmxo)sin(nrrs) + o2 cos(nmx <) cos(nmxs).

e The solution of (3) then has the Green’s function representation

ulz) = / Gl & M) f(€) d.



2. Consider the functional J : X — R defined by

b
J(u) = /a B(u”)2 + %qu2 — fu

where f,q : [a,b] — R are continuous functions and X = HZ(a,b) is the
Sobolev space

X ={u:u, v, u" € L*(a,b),u(a) = u'(a) = u(b) = u'(b) = 0}

Derive the Euler-Lagrange equation satisfied by a smooth minimizer u €
C*a,b] of J. What is the variational derivative §.J/du of J?

Solution

e We compute the directional derivative of J at u € X in the direction

heX:
Drwrm)| =S e conm? o tatur th) — flus b)) da
dt o dt ] |2 21

b
= / (u"h" + quh — fh) dx

o If u € C*[a,b] is smooth, then we can integrate by parts in this expres-
sion to get

iJ(U—Fth)

b
g :/ (" + qu— f)hdz.

t=0

The boundary terms vanish since h € X.

e The variational derivative ¢.J/du is defined by the identity

/ —hdzx,
5‘] n

5, U +qu—f.

d
—J( th)
7 u +

SO

t=0



If J attains a minimum at v € X, then for any h € X the function
J(u+th) of t € R attains a minimum at ¢ = 0, so that

i](u—i—th)

I =0 for every h € X.

t=0

If u € C*[a, b] is smooth, it follows that

b
/ (;—Jhdx:() for every h € X,
o Ou

and the duBois-Reymond lemma implies that §.J/0u = 0, or
u//// + qu — f‘

This forth-order ODE is the Euler-Lagrange equation for the functional
J(u).



3. Consider the regular weighted Sturm-Liouville eigenvalue problem
—(pu) +qu=Xru  a<x<b,
u(a) =0, u(b) =0

where p(x), q(z), r(z) are smooth real-valued functions and p,r > 0.

(a) If the eigenvalues are Ay < Ay < ..., \, < ..., show that the minimum
eigenvalue \; is given by

b 2 2
A= min R(u), R(u) = Ju ()" + v d:c.

u€Hg (a,b) fab ru?dx
(b) Consider the (singular) Sturm-Liouville problem
—(zu') = Azu 0<zr<l1
zu' — 0 asz — 0, u(l)=0
with Rayleigh quotient
1 N2
x(u')* dx
R( U) — fO - ( ) )
Jo wu?dzx
Assuming the result in (a) holds for this singular problem, use a trial function
of the form
u(z) = (1 —x)(ax + b)
to obtain an upper bound for the minimum eigenvalue \;. Compare your
answer with the numerical result Ay = 5.783....

Solution

e (a) Forn=1,2,..., let ¢,(z) denote (real-valued) eigenfunctions with
eigenvalues A, such that

—(pr;l)/ + q¢n = Anrgbn

The eigenfunctions are orthogonal with respect to the weighted inner
product

b
(u,v)T:/ ruv dx.

We normalize them so that

b : _
a 0 ifn 7é m.



e These eigenfunctions form a complete orthonormal set in the weighted
space L?(a,b). We expand u as

b
u(z) = chgbn(a:), Cp = / rueg, dx.

Then

e Also, integrating by parts,
b b
/ [p(v)* + qu*] dz = / [—(pu')'u + qu*] dx

b
= / [—(pu') + qu] udz.
We have
_(pul)/ +qu = Z )\ncnrqbn(x)a
n=1

SO

/b [p(u/)z + qUZ] dr = /br (i )\ncnnbn) (i cm¢m> dx
a n=1 m=1
= i AnC2.

n=1
o [t follows that the Rayleigh quotient is given by

> Anc?
e =
n=1""n

This is minimized when ¢; # 0 and ¢, = 0 for n > 2, and

min R(u) = A;.



o (b) If u(z) = (1 — z)(ax 4+ b), we compute that

! 1 1 1
/ z(u)?dr = ~a® + —ab + =b*,
0

6 3 2
! 1 1 1
2 2 2
dr = — —ab+ —b°.
/Oa:u x 60a +15a +12

Hence, for this trial function, the Rayleigh quotient is

R(u) =

fol w(u')de | a® + 2ab + 3b?
fol xul dx N a? + 4ab + 5b2

We have R = 6 for a = 0 and R = 10 for b = 0, which gives an upper
bound A\ < 6.

e If b # 0, we can write R = R(c) where ¢ = a/b and

R(c) = 10 [m—”?’] |

c2+4c+5

(See Figure 1 for a plot of R(c).) We have

A +2c—1
/ :2 - =
Flo=20 Lc? +4c+5)2] |

and R'(c) = 0 at ¢ = £¢/2 — 1. The minimum of R is attained at
c=+V2— 1, where

R(V2-1)=10(2-v2).

It follows that
A < 10 (2 _ ﬁ) < 5.86.

We could obtain sharper upper bounds by using higher-dimensional
spaces of trial functions e.g. u(z) = (1 — x)(az® + bx + ¢).



5
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Figure 1: Plot of Rayleigh quotient R.



