SOLUTIONS: PROBLEM SET 6
Math 207B, Winter 2012

1. Suppose that A € C\ [0, 00) is not a nonnegative real number. Show that
the Green’s function for the BVP

—u”:)\u+f(37)a O0<z< 00, U(O) :()7 ueLz(O,oo)
is given by
1
iv/ =\

where v/—\ is the branch of the square root with positive real part and

G(x,&N) = sin (Z\/—_/\ZL‘<> exp (—\/—_)\x>>

r< = min(z, §), r~ = max(x, §).

What singularities does G have as a function of A? Write down the Green
function representation for the solution of the BVP.

Solution

e Up to a constant factor, the solution u = u; of the homogeneous equa-
tion —u” = Au with u(0) =0 is

uy(z) = sin <2\/—_)\x> :

Similarly, the solution u = us of the homogeneous equation —u” = \u
with u(z) - 0 as x — oo is

us(x) = exp (—\/—_)\x> :

e The Green’s function, which is symmetric since the problem is self-
adjoint, is therefore given by

csin (’L\/—_/\CL’) exp (—\/—_/\f) if0 <z <,
csin (2\/—_/\5) exp (—\/—_/\a:) iféE<r<oo

where ¢ is a constant.

G(7, & N) ={



e We choose ¢ so that

which implies that
/= [sin (@\/—_)\5) +icos (N—Tf)] exp (—\/—_,\§> — 1.
From Euler’s formula
sin <z\/—_)\§> +icos (2\/—_/\5) — ijexp <\/—_>\§> ,
so ¢ = 1/(iv/=)), which gives the result.

e The Green’s function has a branch cut on the positive real axis 0 <
A < 00, across which v/—=X jumps from 0% + iv/A to 0t — iv/), and a
branch point at A = 0.

e The Green’s function representation of the solution is

u(z) = /0 " G, €0 () de.



2. Consider the Sturm-Liouville problem
—u"' =X 0<z< oo, (cos @)u(0) — (sina)u'(0) =0

where 0 < o < 7 is a real constant. Show that this has an eigenfunction
u € L?(0,00) if and only if 7/2 < o < 7, and in that case A = — cot®*a.
(This problem also has a continuous spectrum with 0 < A < oo, similar to
the one in Problem 1.)

Solution

e The problem is self-adjoint so, from the general theory, any eigenvalue
with eigenfunction u € L*(0, 00) must be real.

o If A = k% > 0, then the general solution of the ODE is
u(z) = ¢p coskx + cysinkx

which is not square-integrable unless u = 0. Similarly, if A = 0, then a
solution u(z) = ¢;4cox is not square-integrable unless u = 0. Therefore
there are no real eigenvalues with A > 0. (These points do, however,
belong to the continuous spectrum.)

o If \ = —k? <0, where k > 0 without loss of generality, then
u(z) = cre™™ 4 cpet”.

For k > 0, this function is square-integrable if and only if ¢ = 0, and
then u(x) = e up to a constant factor. This satisfies the boundary
condition at x = 0 if

cosa+ ksina =0

or k = —cota. Since k > 0 for the solution to decay, we need to
have cotaw < 0 or 7/2 < a < 7. The corresponding eigenvalue and
eigenfunction are

A= —cot?a, u(z) =e

e Note that as the parameter « varies from 7/2 to 7, the eigenvalue A = 0
detaches from the bottom of the continuous spectrum and then goes
off to —oo as @ — w. On the other hand, the absolutely continuous
spectrum 0 < A < oo does not vary as we change the BC. In general,
the absolutely continuous part of the spectrum of a Sturm-Liouville
operator is independent of the boundary conditions, but the eigenvalues
and the singular continuous part of the spectrum, if any exists, are not.



3. Consider the Sturm-Liouville eigenvalue problem
—(2*u) = M l<z<e, u(l) =0, u(e) = 0.

Is it regular or singular? Show that the eigenvalues and eigenfunctions are
given by
1
A = nm? + T up () = 271/?

Write out the corresponding eigenfunction expansion of a function f € L?(1,e).

sin (nmlogz) .

Solution

e The problem is regular since it is posed on a finite interval 1 <z <e
and the coefficient function p(x) = z? is smooth and nonzero on the
interval (including at the endpoints).

e Any eigenvalue is real and positive (e.g. from the Rayleigh quotient,
since p > 0 and ¢ = 0).

e The equation is a homogeneous Euler equation, so we look for solutions
of the form u(x) = 2”. Then

—(2*) = —(ra"™™) = —r(r + 1)a".

(Alternatively, the substitution ¢ = log x reduces the ODE to a constant
coefficient equation.) We therefore get a solution if —r(r +1) = X or

P +r+ =0,
with roots

rz%(—l:l:M).

o If A < 1/4, then r = ry, 79 where 71, ry are distinct real exponents. The
general solution of the ODE is

u(z) = ™ + cox™.
The boundary conditions imply that
c1+c =0, cre™ + e’ = 0.

This linear system is non-singular for 7y # 79, S0 ¢ = ¢ = 0. It follows
that v = 0 and X is not an eigenvalue.



o If A = 1/4, then we get a repeated root = —1/2. A second linearly
independent solution of the ODE is then given by (logz)z", and the
general solution is

u(x) = 12" + co(log x)x”

The boundary conditions implies that ¢; = ¢; = 0, so A = 1/4 is not
an eigenvalue.

o If A > 1/4, then r = —1/2 +iw where w = /A — 1/4. We have

gt = g 2gEe gt = pFwlosT — oog(wlog x) + i sin(w log ),

so the general solution of the ODE is

? sin(w log ).

u(z) = cr™ Y2 cos(wlog ) + coz™
e The boundary condition at x = 1 implies that ¢; = 0. The boundary
condition at x = e is satisfied for ¢; # 0 if and only if sinw = 0, or

w = nm. It follows that the eigenvalues and eigenfunctions are

1
Ap = n?m? + T U () = 2712
Note that, by using the substitution ¢ = log x, we get the orthogonality
relation

/un(:p)um(m) da::/ x~ ! sin (n7 log ) sin(mm log x) da
1 1

sin (nmlog z) n=123,....

1
= / sin (n7t) sin(mmt) dt
0

B {1/2 it n=m,

0 if n=m.

e The eigenfunction expansion of f € L*(1,e) is therefore

Zc 2~ Y2 sin (nmlog x)

= 2/ flx %sin (nmlog x) du.



4. Consider the singular Sturm-Liouville eigenvalue problem for Legendre’s
equation

—[(1 — 2*)u) = \u -l<az<l,

(1—2*)u'(z) =0 asx— £1.

(a) Solve the ODE for A = 0 and show that both endpoints x = £1 are in
the limit circle case.

(b) For n =0,1,2,..., define the Legendre polynomials P,(z) by
1 dr
—_— [(:E2 — 1)”} .

~ 2npl dam
(Note that P, is a polynomial of degree n.) Show that the Legendre poly-
nomials are eigenfunctions of the Legendre equation with eigenvalues

B(x)

An =n(n+1).

HINT. Let v(z) = (2% — 1)" and differentiate the equation (2? — 1)v' = 2nzv
n + 1 times.

(c) With v as in (b), show that

/1 [%]: (Zn)!/l(l—x)n(1+x)”dx: (n!)2/1(1+x)2”dx

1 1 -1

/_l P (z)? dx = 2

1 2n+1

and deduce that

(d) Write out the orthogonality relations for the Legendre polynomials and
the eigenfunction expansion of a function f € L?*(—1,1) with respect to the
Legendre polynomials.

Solution
e (a) If A =0 then [(1 — z?)u/]' = 0. Integrating this once, we get

/ C2

u =
1— a2

where c; is a constant. Integrating again, we get

1+=x
11—z

1
w(z) =c1 + ¢ log




Thus, a fundamental pair of solutions of the ODE is

1+z

W) =1, ) =log|

A function with a logarithmic singularity is square-integrable e.g.

1
/ (log x)*dx < oo,
0

so these functions are square-integrable on (—1,1). Both endpoints are
therefore in the limit circle case.
(b) If v(z) = (2* — 1)", then

(2?2 — 1) = (22 — 1) - 2na(2* — )" ! = 2naw. (1)

According to the Leibnitz rule,

df drg 1
NI (g
+(n+ )dxdx"+2n(n+ )

n+1 n+1 d2 dnfl dn+1
dl’Q dxn—l dxn—i-l

g
W(fg) =foa

g.
Since all derivatives of (% — 1) of order greater than or equal to three
are zero, we have

dn+1 N ) dn—f—QU n+1 d™v
dontl [(@* =] = (2 = 1)dxn+2 +2(n + 1)$d$n+1

Similarly, since all derivatives of x of order greater than or equal to two
are zero, we have

dn+1 dn+1 v dn v

Hence, differentiating (1) n + 1 times, we get

dn+2,U m+1 d”v
2
drtly d"v
= andas”“ + 2n(n + 1)%



e Dividing this equation by 2"n! and using the definition of P,(z), we
find that

(> = 1)P) +2(n+ 1)aP, +n(n+1)P, = 2nz P, + 2n(n + 1) P,,
which simplifies to
—[(1 = 2*)P) =n(n+1)P,.

This shows that P,(x) is an eigenfunction of the Legendre equation
with eigenvalue n(n + 1).

e It follows, for example, from the Weierstrass approximation theorem
that the Legendre polynomials {P, : n = 0,1,2,...} form a complete
set in L?(—1,1), so there are no other eigenvalues or eigenfunctions.

e (c) Integrating by parts n times, we get

J R I I et Ry e P
= (=) /1 (x* —1)"- dd;; [(z* = 1)"] dx

-1

= (—1)"(2n)!/_ (2 —1)"dx.

1

The boundary terms drop out because v and its derivatives of order less
than or equal to n — 1 vanish at the endpoints z = +1, and (z? — 1)"
is a polynomial of degree 2n with leading term z2".

e Factoring (z? — 1)" and integrating by parts n times again, we get

1

(—1)”(2n)!/ (2* — 1)"dzx = (Zn)!/ (1—2)"(1+2)"de

1 -1

B nn—1)...1 ! on
_(Qn)!(n+1)(n+2)...2n/_1(1+x) de

- [(52T
9t (p)2

 on+1




Hence

1 1 1 dnv 2
Py(z)?de = —— — ) d
/_1 (v)" da <2nn!>2/_1 (dx) !

1 22n+1(n!)2
©22(p))2 2n + 1
2
on—+1

e The orthogonality relations are

! _)2/(2n+1) ifn=m,
/1 Pulw) Pu() dv = {0 if n # m.

If f e L*—1,1), then

> 2n

f@) =S aPue) o= 5= [ @R de

where the series converges with respect to the L2-norm.

Remark. The Legendre polynomials also arise from the Gram-Schmidt or-
thogonalization of the powers {1,z,2?%,...,2",...} in L?(—1,1). The expan-
sion of a function f on some finite interval in terms of powers,

f(x) =ag+a1w + apr* + - +aa™ + ...,

is ill-posed (small changes in f may lead to large changes in the coefficients
a,). By contrast, the expansion of f in terms of orthogonal polynomials,
such as the Legendre polynomials, is robust.



