
Solutions: Problem set 6
Math 207B, Winter 2012

1. Suppose that λ ∈ C \ [0,∞) is not a nonnegative real number. Show that
the Green’s function for the BVP

−u′′ = λu+ f(x), 0 < x <∞, u(0) = 0, u ∈ L2(0,∞)

is given by

G(x, ξ;λ) =
1

i
√
−λ

sin
(
i
√
−λx<

)
exp

(
−
√
−λx>

)
where

√
−λ is the branch of the square root with positive real part and

x< = min(x, ξ), x> = max(x, ξ).

What singularities does G have as a function of λ? Write down the Green
function representation for the solution of the BVP.

Solution

• Up to a constant factor, the solution u = u1 of the homogeneous equa-
tion −u′′ = λu with u(0) = 0 is

u1(x) = sin
(
i
√
−λx

)
.

Similarly, the solution u = u2 of the homogeneous equation −u′′ = λu
with u(x)→ 0 as x→∞ is

u2(x) = exp
(
−
√
−λx

)
.

• The Green’s function, which is symmetric since the problem is self-
adjoint, is therefore given by

G(x, ξ;λ) =

{
c sin

(
i
√
−λx

)
exp

(
−
√
−λξ

)
if 0 < x < ξ,

c sin
(
i
√
−λξ

)
exp

(
−
√
−λx

)
if ξ < x <∞

where c is a constant.



• We choose c so that [
−dG
dx

]
x=ξ

= 1

which implies that

c
√
−λ
[
sin
(
i
√
−λξ

)
+ i cos

(
i
√
−λξ

)]
exp

(
−
√
−λξ

)
= 1.

From Euler’s formula

sin
(
i
√
−λξ

)
+ i cos

(
i
√
−λξ

)
= i exp

(√
−λξ

)
,

so c = 1/(i
√
−λ), which gives the result.

• The Green’s function has a branch cut on the positive real axis 0 <
λ < ∞, across which

√
−λ jumps from 0+ + i

√
λ to 0+ − i

√
λ, and a

branch point at λ = 0.

• The Green’s function representation of the solution is

u(x) =

∫ ∞
0

G(x, ξ;λ)f(ξ) dξ.



2. Consider the Sturm-Liouville problem

−u′′ = λu 0 < x <∞, (cosα)u(0)− (sinα)u′(0) = 0

where 0 ≤ α ≤ π is a real constant. Show that this has an eigenfunction
u ∈ L2(0,∞) if and only if π/2 < α < π, and in that case λ = − cot2 α.
(This problem also has a continuous spectrum with 0 ≤ λ < ∞, similar to
the one in Problem 1.)

Solution

• The problem is self-adjoint so, from the general theory, any eigenvalue
with eigenfunction u ∈ L2(0,∞) must be real.

• If λ = k2 > 0, then the general solution of the ODE is

u(x) = c1 cos kx+ c2 sin kx

which is not square-integrable unless u = 0. Similarly, if λ = 0, then a
solution u(x) = c1+c2x is not square-integrable unless u = 0. Therefore
there are no real eigenvalues with λ ≥ 0. (These points do, however,
belong to the continuous spectrum.)

• If λ = −k2 < 0, where k > 0 without loss of generality, then

u(x) = c1e
−kx + c2e

kx.

For k > 0, this function is square-integrable if and only if c2 = 0, and
then u(x) = e−kx up to a constant factor. This satisfies the boundary
condition at x = 0 if

cosα + k sinα = 0

or k = − cotα. Since k > 0 for the solution to decay, we need to
have cotα < 0 or π/2 < α < π. The corresponding eigenvalue and
eigenfunction are

λ = − cot2 α, u(x) = e(cotα)x.

• Note that as the parameter α varies from π/2 to π, the eigenvalue λ = 0
detaches from the bottom of the continuous spectrum and then goes
off to −∞ as α → π. On the other hand, the absolutely continuous
spectrum 0 ≤ λ < ∞ does not vary as we change the BC. In general,
the absolutely continuous part of the spectrum of a Sturm-Liouville
operator is independent of the boundary conditions, but the eigenvalues
and the singular continuous part of the spectrum, if any exists, are not.



3. Consider the Sturm-Liouville eigenvalue problem

−(x2u′)′ = λu 1 < x < e, u(1) = 0, u(e) = 0.

Is it regular or singular? Show that the eigenvalues and eigenfunctions are
given by

λn = n2π2 +
1

4
, un(x) = x−1/2 sin (nπ log x) .

Write out the corresponding eigenfunction expansion of a function f ∈ L2(1, e).

Solution

• The problem is regular since it is posed on a finite interval 1 ≤ x ≤ e
and the coefficient function p(x) = x2 is smooth and nonzero on the
interval (including at the endpoints).

• Any eigenvalue is real and positive (e.g. from the Rayleigh quotient,
since p > 0 and q = 0).

• The equation is a homogeneous Euler equation, so we look for solutions
of the form u(x) = xr. Then

−(x2u′)′ = −(rxr+1)′ = −r(r + 1)xr.

(Alternatively, the substitution t = log x reduces the ODE to a constant
coefficient equation.) We therefore get a solution if −r(r + 1) = λ or

r2 + r + λ = 0,

with roots

r =
1

2

(
−1±

√
1− 4λ

)
.

• If λ < 1/4, then r = r1, r2 where r1, r2 are distinct real exponents. The
general solution of the ODE is

u(x) = c1x
r1 + c2x

r2 .

The boundary conditions imply that

c1 + c2 = 0, c1e
r1 + c2e

r2 = 0.

This linear system is non-singular for r1 6= r2, so c1 = c2 = 0. It follows
that u = 0 and λ is not an eigenvalue.



• If λ = 1/4, then we get a repeated root r = −1/2. A second linearly
independent solution of the ODE is then given by (log x)xr, and the
general solution is

u(x) = c1x
r + c2(log x)xr.

The boundary conditions implies that c1 = c2 = 0, so λ = 1/4 is not
an eigenvalue.

• If λ > 1/4, then r = −1/2± iω where ω =
√
λ− 1/4. We have

xr = x−1/2x±iω, x±iω = e±iω log x = cos(ω log x)± i sin(ω log x),

so the general solution of the ODE is

u(x) = c1x
−1/2 cos(ω log x) + c2x

−1/2 sin(ω log x).

• The boundary condition at x = 1 implies that c1 = 0. The boundary
condition at x = e is satisfied for c2 6= 0 if and only if sinω = 0, or
ω = nπ. It follows that the eigenvalues and eigenfunctions are

λn = n2π2 +
1

4
, un(x) = x−1/2 sin (nπ log x) n = 1, 2, 3, . . . .

Note that, by using the substitution t = log x, we get the orthogonality
relation∫ e

1

un(x)um(x) dx =

∫ e

1

x−1 sin (nπ log x) sin(mπ log x) dx

=

∫ 1

0

sin (nπt) sin(mπt) dt

=

{
1/2 if n = m,

0 if n = m.

• The eigenfunction expansion of f ∈ L2(1, e) is therefore

f(x) =
∞∑
n=1

cnx
−1/2 sin (nπ log x) ,

cn = 2

∫ e

1

f(x)x−1/2 sin (nπ log x) dx.



4. Consider the singular Sturm-Liouville eigenvalue problem for Legendre’s
equation

− [(1− x2)u′]′ = λu − 1 < x < 1,

(1− x2)u′(x)→ 0 as x→ ±1.

(a) Solve the ODE for λ = 0 and show that both endpoints x = ±1 are in
the limit circle case.

(b) For n = 0, 1, 2, . . . , define the Legendre polynomials Pn(x) by

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
.

(Note that Pn is a polynomial of degree n.) Show that the Legendre poly-
nomials are eigenfunctions of the Legendre equation with eigenvalues

λn = n(n+ 1).

Hint. Let v(x) = (x2− 1)n and differentiate the equation (x2− 1)v′ = 2nxv
n+ 1 times.

(c) With v as in (b), show that∫ 1

−1

[
dnv

dxn

]2
= (2n)!

∫ 1

−1
(1− x)n(1 + x)n dx = (n!)2

∫ 1

−1
(1 + x)2n dx

and deduce that ∫ 1

−1
Pn(x)2 dx =

2

2n+ 1
.

(d) Write out the orthogonality relations for the Legendre polynomials and
the eigenfunction expansion of a function f ∈ L2(−1, 1) with respect to the
Legendre polynomials.

Solution

• (a) If λ = 0 then [(1− x2)u′]′ = 0. Integrating this once, we get

u′ =
c2

1− x2

where c2 is a constant. Integrating again, we get

u(x) = c1 +
1

2
c2 log

∣∣∣∣1 + x

1− x

∣∣∣∣ .



Thus, a fundamental pair of solutions of the ODE is

u1(x) = 1, u2(x) = log

∣∣∣∣1 + x

1− x

∣∣∣∣ .
A function with a logarithmic singularity is square-integrable e.g.∫ 1

0

(log x)2 dx <∞,

so these functions are square-integrable on (−1, 1). Both endpoints are
therefore in the limit circle case.

• (b) If v(x) = (x2 − 1)n, then

(x2 − 1)v′ = (x2 − 1) · 2nx(x2 − 1)n−1 = 2nxv. (1)

According to the Leibnitz rule,

dn+1

dxn+1
(fg) = f

dn+1g

dxn+1
+(n+1)

df

dx

dng

dxn
+

1

2
n(n+1)

d2f

dx2
dn−1g

dxn−1
+· · ·+d

n+1f

dxn+1
g.

Since all derivatives of (x2 − 1) of order greater than or equal to three
are zero, we have

dn+1

dxn+1

[
(x2 − 1)v′

]
= (x2 − 1)

dn+2v

dxn+2
+ 2(n+ 1)x

dn+1v

dxn+1
+ n(n+ 1)

dnv

dxn
.

Similarly, since all derivatives of x of order greater than or equal to two
are zero, we have

dn+1

dxn+1
(xv) = x

dn+1v

dxn+1
+ (n+ 1)

dnv

dxn
.

Hence, differentiating (1) n+ 1 times, we get

(x2 − 1)
dn+2v

dxn+2
+ 2(n+ 1)x

dn+1v

dxn+1
+ n(n+ 1)

dnv

dxn

= 2nx
dn+1v

dxn+1
+ 2n(n+ 1)

dnv

dxn
.



• Dividing this equation by 2nn! and using the definition of Pn(x), we
find that

(x2 − 1)P ′′n + 2(n+ 1)xP ′n + n(n+ 1)Pn = 2nxP ′n + 2n(n+ 1)Pn,

which simplifies to

−[(1− x2)P ′n]′ = n(n+ 1)Pn.

This shows that Pn(x) is an eigenfunction of the Legendre equation
with eigenvalue n(n+ 1).

• It follows, for example, from the Weierstrass approximation theorem
that the Legendre polynomials {Pn : n = 0, 1, 2, . . . } form a complete
set in L2(−1, 1), so there are no other eigenvalues or eigenfunctions.

• (c) Integrating by parts n times, we get∫ 1

−1

(
dnv

dxn

)2

=

∫ 1

−1

dn

dxn
[
(x2 − 1)n

]
· d

n

dxn
[
(x2 − 1)n

]
dx

= (−1)n
∫ 1

−1
(x2 − 1)n · d

2n

dx2n
[
(x2 − 1)n

]
dx

= (−1)n(2n)!

∫ 1

−1
(x2 − 1)n dx.

The boundary terms drop out because v and its derivatives of order less
than or equal to n− 1 vanish at the endpoints x = ±1, and (x2 − 1)n

is a polynomial of degree 2n with leading term x2n.

• Factoring (x2 − 1)n and integrating by parts n times again, we get

(−1)n(2n)!

∫ 1

−1
(x2 − 1)n dx = (2n)!

∫ 1

−1
(1− x)n(1 + x)n dx

= (2n)!
n(n− 1) . . . 1

(n+ 1)(n+ 2) . . . 2n

∫ 1

−1
(1 + x)2n dx

= (n!)2
[

(1 + x)2n+1

2n+ 1

]1
−1

=
22n+1(n!)2

2n+ 1
.



Hence ∫ 1

−1
Pn(x)2 dx =

1

(2nn!)2

∫ 1

−1

(
dnv

dxn

)2

dx

=
1

22n(n!)2
22n+1(n!)2

2n+ 1

=
2

2n+ 1
.

• The orthogonality relations are∫ 1

−1
Pn(x)Pm(x) dx =

{
2/(2n+ 1) if n = m,

0 if n 6= m.

If f ∈ L2(−1, 1), then

f(x) =
∞∑
n=0

cnPn(x), cn =
2n+ 1

2

∫ 1

−1
f(x)Pn(x) dx,

where the series converges with respect to the L2-norm.

Remark. The Legendre polynomials also arise from the Gram-Schmidt or-
thogonalization of the powers {1, x, x2, . . . , xn, . . . } in L2(−1, 1). The expan-
sion of a function f on some finite interval in terms of powers,

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + . . . ,

is ill-posed (small changes in f may lead to large changes in the coefficients
an). By contrast, the expansion of f in terms of orthogonal polynomials,
such as the Legendre polynomials, is robust.


