
Solutions: Problem set 7
Math 207B, Winter 2012

1. (a) Explain why the total birth rate B(t) of a population with constant
reproductive rate λ per individual and exponential survival rate e−βt over
time t satisfies the renewal equation

B(t) = N0λe
−βt + λ

∫ t

0

e−β(t−s)B(s) ds

where N0 is the total initial population at t = 0. What are the dimensions
of N0, λ, β, and B(t)?

(b) Solve this integral equation and discuss the behavior of B(t) as t → ∞.
Does your answer make sense?

Hint. One approach is to show that B(t) satisfies the IVP

Ḃ = (λ− β)B, B(0) = N0λ.

Solution

• (a) After time t, there are N0e
−βt survivors from the initial population,

and they contribute λ · N0e
−βt to the birthrate. For 0 < s < t, the

population born between times s and s + ds is B(s) ds, and of these
eβ(t−s)B(s) ds survive to time t, so they contribute λe−β(t−s)B(s) ds
to the birth rate. Integrating this over 0 < s < t and adding the
contribution form the initial population, we get the total birth rate
B(t).

• Let P denote the dimension of population and T the dimension of time.
Then

[N0] = P, [λ] =
1

T
, [β] =

1

T
, [B] =

P

T
.

• (b) Differentiating the integral equation with respect to t, we get

Ḃ(t) = −N0λβe
−βt − λβ

∫ t

0

e−β(t−s)B(s) ds+ λB(t).

Using the integral equation to eliminate the integral from this equation,
we find that

Ḃ = (λ− β)B.



Setting t = 0 in the integral equation, we get

B(0) = N0λ.

The solution of this IVP is

B(t) = N0λe
(λ−β)t.

• If λ > β, meaning that the birth rate per individual exceeds the death
rate, then the total birth rate (and the total population) grows expo-
nentially in time. If λ < β, meaning that the death rate per individual
exceeds the birth rate, then the total birth rate (and the total popula-
tion) decays exponentially. If λ = β, then the total birth rate (and the
total population) remains constant.



2. (a) Consider the following Fredholm equation of the second kind

u(x)− λ
∫ 1

0

xyu(y) dy = f(x), 0 ≤ x ≤ 1

where λ ∈ C is a constant and f is a given (continuous) function. If λ 6= 3,
show that this equation has a unique (continuous) solution for u(x) and find
the solution. If λ = 3, determine for what functions f a solution exists and
find the solutions in that case.

(b) For what functions f is the following Fredholm equation of the first kind∫ 1

0

xyu(y) dy = f(x), 0 ≤ x ≤ 1

solvable for u(x)? Describe the solutions in that case.

Hint. Note that these Fredholm equations are degenerate.

Solution

• (a) The integral equation implies that

u(x) = f(x) + cx (1)

where the constant c is given by

c = λ

∫ 1

0

yu(y) dy.

Using the expression (1) for u in this equation for c, we get

c = λ

∫ 1

0

yf(y) dy + λ

∫ 1

0

y · cy dy

= λ

∫ 1

0

yf(y) dy +
1

3
λc,

or

(3− λ) c = 3λ

∫ 1

0

yf(y) dy.



• If λ 6= 3, then we get

c =
3λ

3− λ

∫ 1

0

yf(y) dy

and (1) with this value of c is the unique solution of the integral equa-
tion for any continuous function f .

• If λ = 3, then the integral equation is solvable if and only if∫ 1

0

yf(y) dy = 0.

In that case, the solution is (1) where c is an arbitrary constant.

• Note that the integral operator

(Ku)(x) =

∫ 1

0

xyu(y) dy

has eigenvalue µ = 1/3 and eigenfunction u(x) = x with Ku = µu, so
cx is an arbitrary solution of the homogeneous equation for λ = 3.

• (c) Since ∫ 1

0

xyu(y) dy = cx, c =

∫ 1

0

yu(y) dy

the equation is only solvable if

f(x) = cx

for some constant c. In that case, one solution is the constant function

u(x) = 2c

The general solution is

u(x) = 2c+ v(x)

where v(x) is any function orthogonal to x, meaning that∫ 1

0

xv(x) dx = 0.

• Note that the range of K is one-dimensional, and the nullspace of
K, consisting of eigenfunctions with eigenvalue µ = 0, is infinite-
dimensional.



3. Show that the following IVP for a second-order scalar ODE for u(t)

ü(t) = f (t, u(t)) ,

u(0) = u0, u̇(0) = v0

is equivalent to the Volterra integral equation

u(t) =

∫ t

0

(t− s)f (s, u(s)) ds+ u0 + v0t.

Solution

• Integrating the ODE once, we get

u̇(t) = v0 +

∫ t

0

f (s, u(s)) ds.

Integrating again, we get

u(t) = u0 + v0t+

∫ t

0

[∫ r

0

f (s, u(s)) ds

]
dr.

Integrating by parts in the r-integral, we obtain∫ t

0

[∫ r

0

f (s, u(s)) ds

]
dr =

∫ t

0

1 ·
[∫ r

0

f (s, u(s)) ds

]
dr

=

[
r

∫ r

0

f (s, u(s)) ds

]t
0

−
∫ t

0

rf (r, u(r)) dr

= t

∫ t

0

f (s, u(s)) ds−
∫ t

0

sf (s, u(s)) ds

=

∫ t

0

(t− s)f (s, u(s)) ds,

which shows that a solution of the IVP satisfies the integral equation.

• Conversely, if u(t) satisfies the integral equation, then setting t = 0 in
the equation we get u(0) = u0. Similarly, differentiating the integral
equation once and setting t = 0, we get u̇(0) = v0. Differentiating once
again, we get ü = f(t, u), so a solution of the integral equation satisfies
the IVP.

• Note that the integral equation incorporates both the ODE and the
initial conditions.



4. Consider the following BVP for u(x) in 0 < x < 1:

− u′′ = k2 [1 + εq(x)]u+ f(x),

u(0) = 0, u(1) = 0.
(2)

Here k > 0 is a constant, ε is a small parameter, and f(x), q(x) are given
(continuous) functions. Assume that k 6= nπ for any integer n ∈ N, so that
k2 is not an eigenvalue of −d2/dx2 with Dirichlet BCs.

(a) Find the Green’s function G(x, ξ) for (2) with ε = 0, which satisfies

− d2G

d2x
= k2G+ δ(x− ξ) in 0 < x < 1,

G(0, ξ) = 0, G(1, ξ) = 0.
(3)

(b) Use the Green’s function from (a) to reformulate (2) as a Fredholm inte-
gral equation for u(x) of the form

u(x) = ε

∫ 1

0

K(x, ξ)u(ξ) dξ + g(x). (4)

(c) Write out the first few terms in the Neumann series (or Born approxima-
tion) for u as integrals involving g(x), q(x), and G(x, ξ).

Solution

• (a) Solutions of the homogeneous equation

−d
2u

dx2
− k2u = 0

that vanish at x = 0 and x = 1 are

u1(x) = sin kx, u2(x) = sin (k(1− x))

respectively. The Wronskian of these solutions is

u1u
′
2 − u2u′1 = −k sin kx cos (k(1− x))− k cos kx sin (k(1− x))

= −k sin k,

which is nonzero if k 6= nπ.



• The Green’s function in (3), whose x-derivative jumps by −1 across
x = ξ, is therefore

G(x, ξ) =

{
sin kx sin (k(1− ξ)) /k sin k if 0 ≤ x ≤ ξ,

sin kξ sin (k(1− x)) /k sin k if ξ ≤ x ≤ 1.

or

G(x, ξ) =
sin (kx<) sin (k(1− x>))

k sin k
.

(b) We write (2) as

− u′′ − k2u = εq(x)u+ f(x),

u(0) = 0, u(1) = 0.

It follows from the Green’s function representation that

u(x) =

∫ 1

0

G(x, ξ) [εq(ξ)u(ξ) + f(ξ)] dξ

= ε

∫ 1

0

G(x, ξ)q(ξ)u(ξ) dξ +

∫ 1

0

G(x, ξ)f(ξ) dξ,

which gives (4) with

K(x, ξ) = G(x, ξ)q(ξ), g(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ.

• (c) The Neumann series expansion for

u = g + εKu

is
u = g + εKg + ε2K2g + ε3K3g + . . .

Explicitly, we have

Kg(x) =

∫ 1

0

G(x, ξ)q(ξ)g(ξ) dξ,

K2g(x) =

∫ 1

0

∫ 1

0

G(x, ξ1)G(x, ξ2)q(ξ1)q(ξ2)g(ξ2) dξ1dξ2,

K2g(x) =

∫ 1

0

∫ 1

0

∫ 1

0

G(x, ξ1)G(x, ξ2)G(x, ξ3)q(ξ1)q(ξ2)q(ξ3)g(ξ3) dξ1dξ2dξ3.

• These terms correspond physically to single, double, and triple scatter-
ing corrections due to the perturbation εq(x) in the coefficient.


