SOLUTIONS: PROBLEM SET 7
Math 207B, Winter 2012

1. (a) Explain why the total birth rate B(t) of a population with constant
reproductive rate A per individual and exponential survival rate e ?* over
time t satisfies the renewal equation

t
B(t) = Nohe P + )\/ e P9I B(s) ds
0

where Ny is the total initial population at ¢ = 0. What are the dimensions
of Ny, A, B, and B(t)?

(b) Solve this integral equation and discuss the behavior of B(t) as t — 0.
Does your answer make sense?

HINT. One approach is to show that B(t) satisfies the IVP

B=(O\-3)B,  B(0)= Ny\.

Solution

e (a) After time ¢, there are Nye™?! survivors from the initial population,
and they contribute X - Noe™?* to the birthrate. For 0 < s < t, the
population born between times s and s + ds is B(s)ds, and of these
P19 B(s) ds survive to time t, so they contribute Ae =% B(s)ds
to the birth rate. Integrating this over 0 < s < t and adding the
contribution form the initial population, we get the total birth rate

B(t).
e Let P denote the dimension of population and 7" the dimension of time.
Then ) ) P

e (b) Differentiating the integral equation with respect to ¢, we get
t
Blt) = —NoABeP* — A3 / ¢~ B(s) ds + AB(t).
0

Using the integral equation to eliminate the integral from this equation,
we find that '
B=(\—p)B.



Setting ¢ = 0 in the integral equation, we get
B(0) = NoA.
The solution of this IVP is

B(t) = NoheP =1,

If A > 3, meaning that the birth rate per individual exceeds the death
rate, then the total birth rate (and the total population) grows expo-
nentially in time. If A\ < 5, meaning that the death rate per individual
exceeds the birth rate, then the total birth rate (and the total popula-
tion) decays exponentially. If A = /3, then the total birth rate (and the
total population) remains constant.



2. (a) Consider the following Fredholm equation of the second kind

u(z) — A / wu(y)dy = f(z),  0<z<1

where A € C is a constant and f is a given (continuous) function. If A # 3,
show that this equation has a unique (continuous) solution for u(x) and find
the solution. If A = 3, determine for what functions f a solution exists and
find the solutions in that case.

(b) For what functions f is the following Fredholm equation of the first kind

/1xyu<y>dy=f<x>, 0<a<1
0

solvable for u(x)? Describe the solutions in that case.

HinT. Note that these Fredholm equations are degenerate.

Solution

e (a) The integral equation implies that
u(z) = f(z) +cx (1)
where the constant c is given by

1
c= )\/ yu(y) dy.
0

Using the expression (1) for u in this equation for ¢, we get
1 1
C—A/ yf(y)derA/ y-cydy
0 0

1
1
= A/ yf(y)dy + §Ac,
0

or

(B=ANc= 3A/0 yf(y) dy.



If X # 3, then we get
o3x !
3=

and (1) with this value of ¢ is the unique solution of the integral equa-
tion for any continuous function f.

c yf(y)dy

If A = 3, then the integral equation is solvable if and only if

/Olyf(y)dy=0-

In that case, the solution is (1) where ¢ is an arbitrary constant.

Note that the integral operator

(Ku)(z) = / zyuly) dy

has eigenvalue p = 1/3 and eigenfunction u(x) = z with Ku = pu, so
cx is an arbitrary solution of the homogeneous equation for A = 3.

(c) Since
1 1
/ vyuly)dy = co, ¢ = / yuly) dy
0 0

the equation is only solvable if

flz) =cx
for some constant c. In that case, one solution is the constant function
u(z) = 2¢

The general solution is
u(z) = 2¢+v(x)

where v(x) is any function orthogonal to x, meaning that

/01 o) dr = 0,

Note that the range of K is one-dimensional, and the nullspace of
K, consisting of eigenfunctions with eigenvalue g = 0, is infinite-
dimensional.



3. Show that the following IVP for a second-order scalar ODE for u(t)

(t) = f(t,ult)),
u(0) = ug, u(0) =1y

is equivalent to the Volterra integral equation
t
u(t) = / (t —s)f (s,u(s)) ds + ug + vot.
0

Solution

e Integrating the ODE once, we get

u(t) = vg +/0 f(s,u(s)) ds.

Integrating again, we get

u(t) = g +v0t+/0t [/OTf(S,u(s)) ds] dr.

Integrating by parts in the r-integral, we obtain

/Ot [/Orﬂs,u(s)) ds] dr:/otl‘ [/Orf@’u(s)) ds} "

_ [T/Orf(s,u(s)) dsl—/otrf(r,u(r)) dr
_ Otf(s,u(s)) ds — /Ot sf (s,u(s)) ds

- / (t— 5)f (s,u(s)) ds,

0

which shows that a solution of the IVP satisfies the integral equation.

e Conversely, if u(t) satisfies the integral equation, then setting ¢ = 0 in
the equation we get u(0) = ug. Similarly, differentiating the integral
equation once and setting t = 0, we get 4(0) = vg. Differentiating once
again, we get i = f(¢,u), so a solution of the integral equation satisfies

the IVP.

e Note that the integral equation incorporates both the ODE and the

initial conditions.



4. Consider the following BVP for u(z) in 0 < z < 1:

—u" =k [1 +eq(x)]u+ f(z),
u(0) =0, u(1) = 0. @)

Here k£ > 0 is a constant, € is a small parameter, and f(z), g(z) are given
(continuous) functions. Assume that k # nz for any integer n € N, so that
k? is not an eigenvalue of —d?/dx? with Dirichlet BCs.

(a) Find the Green’s function G(z,&) for (2) with e = 0, which satisfies

d2
_ézlﬁ(;q_d(x—g) n0<z<l,

G0,6) =0,  G(1,€) =0.

(3)

(b) Use the Green’s function from (a) to reformulate (2) as a Fredholm inte-
gral equation for u(z) of the form

ue) = [ K €)ul) de + gla). (1)

(c) Write out the first few terms in the Neumann series (or Born approxima-
tion) for w as integrals involving g(z), ¢(x), and G(z,§).

Solution
e (a) Solutions of the homogeneous equation

d*u

that vanish at x =0 and x = 1 are
uy () = sin kz, ug(z) = sin (k(1 — x))
respectively. The Wronskian of these solutions is

Uy — uguy = —ksin kx cos (k(1 — z)) — k cos kx sin (k(1 — x))
= —ksink,

which is nonzero if k # nm.



e The Green’s function in (3), whose z-derivative jumps by —1 across
x = &, is therefore

Glr.€) = sin kxsin (k(1 —€)) /ksink if0<z<¢,
D57 sin ke sin (k(1 — 7)) [k sink ite<a<l.

or

sin (kx<)sin (k(1 — x))
ksin k '

G, &) =
(b) We write (2) as
—u" — k*u = eq(x)u + f(x),
u(0) =0, u(1) =0.

It follows from the Green’s function representation that
1
ulz) = / G €) [eq(€)u(€) + [(€)] d
0 1 1
= G d G d
. / (2, £)a(€)u(€) dé + / (2. €) F(€) de.
which gives (4) with
1
K(r,6) = Ga.0q(6).  alr) = / Gl €) f(€) de.

e (c) The Neumann series expansion for
u=g+eKu
is
u=g+eKg+ K2 g+EK3 g+ ...
Explicitly, we have

Kg(x) = / G, €)q(€)g(€) d
Kg(z) = / / G, )G, &2)a1)alE2)g(E) devds,

K2g(z) = / / / G, €)C (. £2)C (. £3)a(E0)a(E2)(€:)g (€3) dérdtadts,

e These terms correspond physically to single, double, and triple scatter-
ing corrections due to the perturbation eg(x) in the coefficient.



