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THE EQUATIONS FOR LARGE VIBRATIONS OF STRINGS 

STUART S. ANTMAN 

1. Introduction. Many elementary books on partial differential equations ostensibly show 
that the wave equation in one spatial dimension describes the small transverse vibrations of an 
elastic string. Of these books I know of but one, namely [21j, whose development of the wave 
equation does not invoke such unjustifed simplifications as the assumption that the motion of 
each particle of the string is confined to a plane perpendicular to the line joining the ends of the 
string. I fear that slipshod derivations of the equations of mathematical physics, like those 
relying on such ad hoc assumptions, succeed only in convincing novice scientists and mathema- 
ticians that applications are inherently dirty and incompatible with analysis. Indeed, good 
students of science can only be found among those who find such presentations incomprehensi- 
ble. 

This article has several objectives: (i) To show that the equations governing the large motion 
of a string of any material can be cleanly, simply, and honestly derived from fundamental 
principles. (ii) To show that the weak form of these equations can be obtained by a simple, yet 
rigorous, procedure that, unlike the standard methods, is not based upon tacit hypotheses that 
are invalid in the very instances when the weak form is most useful. (The weak form of the 
equations, which is formally equivalent to the physicists' Principle of Virtual Work, plays a 
central role in the modern theory of differential equations.) (iii) To examine some as yet 
unstudied aspects of the relationship between the nonlinear problem for elastic strings and its 
linearization about a straight equilibrium state. (iv) To discuss a number of analytical questions 
closely connected with the use of the weak formulation. 

We begin our study in Section 2 by presenting a naive yet honest derivation of the classical 
equations of motion under the smoothness assumption that all derivatives appearing in the 
governing equations are continuous. In this setting we discuss the nature of elastic and 
viscoelastic strings and sketch the standard derivation of the weak equations. In Section 3 we 
carefully reconsider this derivation without these smoothness assumptions, which may well be 
unwarranted on both physical and mathematical grounds. Here we show the equivalence of the 
integral formulation of the governing equations as an impulse-momentum law to the weak 
formulation when the variables of the problem are merely required to be such that all the 
integrals appearing in the analysis are well defined in the sense of Lebesgue. Although some 
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basic results of real variable theory are needed to make this development precise, the underlying 
construction, which is new, is completely elementary. Though quite general, this setting cannot 
directly handle concentrated and impulsive forces. We content ourselves with commenting but 
briefly on such distributional forces because their comprehensive treatment entails some deep, 
open mathematical questions, which would seem to demand a far more sophisticated approach 
than that used here. In Section 4, we first study the elementary, but nonetheless illuminating, 
question of existence and uniqueness of a straight equilibrium state. We reduce this problem 
(which is paradigmatic for quasilinear elliptic boundary value problems) to that of finding the 
zeros of a real-valued function. We extend this analysis to treat a concentrated load. We next 
describe a systematic but formal perturbation scheme that approximates the exact equations by 
a sequence of nonhomogeneous linear wave equations. The first approximation consists of three 
classical, uncoupled, wave equations for the transverse and longitudinal motion about the 
straight equilibrium state. We then discuss some strategies for the rigorous determination of the 
relation between the linear and nonlinear problems. In Section 5 we discuss the historical 
background of this problem, the role of discretized models, pertinent research, and some open 
problems. 

2. The Classical Equations. Let (i, j, k) be an orthonormal basis for the Euclidean 3-space E3. 
A configuration of a string, which we think of as a region of space that a string could occupy, is 
defined to be a curve (not necessarily simple) in E3. We define the reference configuration of the 
string to be the unit segment (xi: x E[0, 1]). We may think of the string in its unstretched state 
as occupying this configuration. We identify a materialparticle of the string by its coordinate x 
in this configuration. Let r(x, t) denote the position of particle x at time t. We take the domain 
of r to be [0, 1] x [0, oo). (The function r(., t) thus defines the configuration at time t.) Then 
rx(x, t)- (ar/ax)(x, t) is tangent to the curve r(., t) at the point r(x, t). In this section we assume 
that all functions of (x, t) and of x that are exhibited here are continuous on the interiors of their 
domains. (Thus, by this convention, rx is continuous on (0, 1) x (0, 00).) 

We assume that the ends x = 0 and x = 1 of the string are held fixed at the points 0 and Li. In 
the optimistic spirit that led us to assume that r is continuous on (0, 1) x (0, oo), we may further 
suppose that r(., t) is continuous on [0, 1]. In this case these boundary conditions are defined by 
the following pointwise limits: 

lim r(x, t) =0, lim r(x, t) = Li (for t > 0). (2.1a) 

Conditions (2.la) are conventionally denoted by 
r(O, t) = 0, r(1, t) = Li. (2. lb) 

We assume that at time t = 0, the string is released from configuration u with velocity field v. If 
r,(x,.) is assumed to be continuous on [0,oo), then these initial conditions have the pointwise 
interpretations 

lim r(x, t) = u(x), lim r,(x, t) = v(x), (2.2a) 
t-*O t-*O 

which are conventionally written as 

r(x,0) = u(x), r,(x,0) = v(x) for x E(0, 1). (2.2b) 

(In Section 3 we examine interpretations of (2.lb) and (2.2b) that are less restrictive than those 
of (2.1a) and (2.2a).) For r to have some chance of being smooth, we should require u to meet 
the compatibility conditions 

u(O) =0, u(1)= Li. (2.3) 

We complete our study of the geometry of the deformed string by noting that the elongation 
at (x, t), which is the local ratio at x of the length in the configuration at time t to that of the 
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reference configuration, is Irj(x, t)j. We assume that 

IrX(x, t) > 0 (2.4) 
to prevent this length ratio from being reduced to zero. 

For x E(0, 1) let n+(x, t) be the contact force exerted on the material segment [0,x) by the 
material segment lx, 1] at time t and let -n-(x, t) be the contact force exerted on (x, 1] by [O,x] 
at time t. (By definition of a contact force, n+(x, t) is also the contact force exerted at time t on 
[a,x) by [x,b] for any a and b satisfying 0 <a <x <b < 1; i.e., n+ depends solely on (x, t).) Let 
f(x, t) be the force per unit reference length at (x, t) exerted by any other agent. f could depend 
on r in quite complicated ways; e.g., f could be given by f(x, t) = g(r(x, t), rj(x, t),x, t), where g is 
prescribed. (The dependence of g on r, would account for air resistance, while its dependence on 
r, which is of less physical importance, could account for the spring-like resistance of an ambient 
elastic medium or for variable gravitational attraction.) Let p(x) be the mass density per unit 
length at x in the reference configuration. 

The requirement that the resultant force on any material segment (a, b) c (0, 1) equal the time 
derivative of the linear momentum of that segment yields the equations of motion for the string: 

n+(b, t)-n-(a, t) + fbf(x, t) dx = dt f p(x)r,(x, t) dx 

= 
f p(x)r,(x, t) dx for all (a, b) c (0, 1). (2.5) 

Now the continuity of n+ implies that n+(a,t)=limban+(b,t). Since f and r,, have been 
assumed to be continuous, we may let b-+a in (2.5) to obtain 

n+(a,t)=n-(a,t) for all aE(0, 1). (2.6) 
We may accordingly drop the superscripts from n. If we now differentiate (2.5) with respect to b 
and then replace b by x, we obtain the classical equations of motion of a string: 

nX(x, t) + f(x, t) = p(x)r,,(x, t), for x Ei (0, 1), t > 0. (2.7) 
We describe the material properties of the string by specifying how the force n is related to 

the motion r. Such a relation is necessary if we are to obtain a formally determinate system 
containing (2.7). The defining property of a string, which distinguishes it from a rod (which 
resists bending), is that n(x, t) must be tangent to the curve r(., t) at x. (The motivation for this 
condition comes from the classical equations expressing the equality of the resultant torque on 
any segment to the time derivative of angular momentum for that segment. These equations are 
mx r,x xn+ g= w, where m(x, t) is the couple exerted on [0,x) by [x, 1] at t, g(x, t) is the applied 
couple per unit length, and w is the angular momentum. Suppose g =0. If we assume that our 
one-dimensional body has zero thickness, then we can take m = 0 and w =0. In this case, the 
angular momentum equation reduces to r,Xx n = 0, which is our assumption for strings.) We 
accordingly take 

n(x, t) = n(x, t)r.(x, t)/lr.(x, t)I. (2.8) 
n(x, t) is the tension at (x, t). Let 

r'(x,s)=r(x,t-s) fors>0. (2.9) 
r'(x, *) is called the history of r(x, -) up to time t. We account for a very large class of materials 
for strings by assuming that there is a functional N such that 

n(x, t) = N(jr, (x, -)j,x), (2.10) 

i.e., that the tension at (x, t) is determined by the past history of the elongation Jr.I at x. We do 
not allow N to depend upon r'(x,.) or upon r.(x,.) because such a dependence would imply 
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that the material properties of the string could be altered by causing it to undergo a rigid 
motion. We do not allow N to depend upon t because such a dependence would imply that 
material properties would be influenced by the choice of a clock. N could depend upon Ir.(-, .)I, 
but such generality has not proved particularly fruitful in mechanics. In the special case for 
which there is a function No such that 

n(x, t) = No(Irx(x, t)j;x), (2.11) 

the string is called elastic. That an increase in tension accompany an increase in elongation is 
ensured by requiring that No(-, x) be increasing. If there is a function N1 such that 

n(x, t) = Nl(lrx(x, t)j, Irx(x, t)l,,x), (2.12) 
the string is called viscoelastic (of a differential type). That an increase in tension accompany an 
increase in the rate of elongation is ensured by demanding that fB->N1 (a,,8, x) be increasing. If 
we substitute (2.11) or (2.12) into (2.8) and then substitute this into (2.7) we obtain a quasilinear 
system of partial differential equations. If we use the more general constitutive assumption 
(2.10), then we get what may be called a quasilinear partial functional-differential equation. In 
this case the initial conditions (2.2) would have to be supplemented by giving r?(., *). 

Let i have compact support in (0, 1) x (0, oo). We can formally obtain the weak form of (2.7) 
or the Principle of Virtual Work by dotting (2.7) with q and integrating the resulting expression 
by parts over (0,1) x (0, oo). We obtain 

ff1I[n-nx-f -f* +prt.ijX]dxdt =0 (2.13) 

for all such ij. By using the arbitrariness of v and the smoothness of our other variables, we 
could easily reverse our steps and recover (2.7) and (2.5) from (2.13). 

3. The Weak Form of the Equations. It has long been known that the solutions of the 
equations for purely longitudinal motion of elastic strings can exhibit shocks, i.e., discontinuities 
in rx and r, (cf. [14], (16]). The same is also true for strings governed by certain forms of (2.10), 
in which N depends on the past history of rx (cf. [9], e.g.). The shock structure of spatial motions 
of elastic strings has recently been analyzed by [13]. Thus the smoothness assumptions made in 
Section 2 are completely unwarranted for elastic strings at least. It is clear that the integral 
formulations (2.5) and (2.13) would make sense under far weaker smoothness assumptions than 
used in Section 2; it is not clear, however, that (2.5) and (2.13) are equivalent. In this section, we 
study the formulation of the problem under these weaker smoothness assumptions and we give a 
simple direct proof of the equivalence of precisely formulated generalizations of (2.5) and (2.13). 
This proof replaces the demonstration of formal equivalence given in Section 2, which is 
universally propounded by mathematicians and physicists alike despite the pivotal role played in 
it by the classical equation (2.7), an equation that may be devoid of mathematical meaning. In 
consonance with the goals of this section and in contrast with the methods of Section 2, we must 
state regularity restrictions on our variables with great care. 

If we formally integrate (2.5) with respect to t over [0, Tr and take account of (2.2), then we 
obtain the (Linear) Impulse-Momentum Law: J [n+(b,t)-n-(a,t)]dt+ fbf(x, t) dx dt 

=J p(x)[r,(x, T)-v(x)]dx. (3.1) 

The left side of (3.1) is the (linear) impulse of the force system {n+,f} and the right side of (3.1) is 
the change in linear momentum for the segment (a, b) over time interval [0,). We regard (3.1) as 
the natural generalization of the equations of motion (2.5). We now state virtually the weakest 
possible restrictions on the functions entering (3.1) for the integrals of (3.1) to make sense as 
Lebesgue integrals and for our boundary and initial conditions to have consistent generaliza- 
tions. We then study these generalizations by appealing to results from real analysis. We resume 
the main thread of our development in the paragraph containing (3.5). The reader unfamiliar 
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with real analysis may wish to skim over or even skip the intervening material, which appears in 
small type. 

We assume that there are numbers p - and p + such that 

O<p-<p(x)p'p<oo forallxE[0,l]. (3.2) 

We assume that r, and rt are locally integrable on [0, 1] x [0, oo), that r satisfies the boundary conditions 
(2.1) in the sense of trace (cf. [1], [17]), i.e., that 

limi f 2r(x, t) dt = 0, lim f; 2[r(x, t) - Li] dt = 0 for each ( t , t2) E [0, oo), (3.3) 

that u is integrable on [0,1], that the first initial condition of (2.2) is assumed in the sense of trace: 

lim fb[r(x,t)-u(x)]dx=O for all (a,b)c(0, 1), (3.4) 
t- a 

and that v is integrable on [0,1]. (Conditions (3.2) and (3.3) are consistent with the local integrability of rx 
and rt; cf. [1], [17].) We do not prescribe a corresponding generalization of the second initial condition of 
(2.2) because we shall show that it is inherent in (3.1) as the presence there of v might suggest. 

We assume that n+, n-, and f are locally integrable on [0, 1] x [0, oo). After we determine in what sense 
n+ equals n- we shall see that this requirement imposes growth restrictions on the functional N of (2.10), 
which we do not explore. 

We must show that the first and third integrals of (3.1) make sense. This will enable us to obtain a 
weaker version of the intepretation of n+ than that prevailing in Section 2. Since n+ is locally integrable on 
[0, l]x [0, oo), Fubini's Theorem implies that for each r E(0, oo), there is a set A +() E[0, 1] with Lebesgue 
measure IA +(i)I = 1 such that n+(x,-) is integrable over [0,r] for x EA +(r). Moreover, the Lebesgue 
Differentiation Theorem implies that there is a subset A+({r) of A +(Xr) with IAI(,r)I = 1 such that for 
xE A +(r), f ;n+(x, t)dt has the "right" value in the sense that it is the limit of its averages over intervals 
centered at x. The corresponding statements obtained by replacing the superscript "+" by "-" are 
likewise true. Let A('r)=AA+ ('r)nA- (r) (IA@)I = 1). Let B be the set of t's for which p(.)rt(.,t) is integrable 
over [0,1] and for which f &p(x)rt(x,t)ddx has the "right" value. (By Fubini's Theorem and Lebesgue's 
Differentiation Theorem we have that l B n [0, TII = T for all T > 0.) Thus each term in (3.1) is well defined 
for each r EB and for each a and b in A(X) with a < b. 

We now derive some important consequences from (3.1). Since Fubini's Theorem allows us to 
interchange the order of integration of the double integral in (3.1), we find that bI 5 ;j,+n(b, t)dt 
is absolutely continuous on A(T). Consequently, 

n+ (a, t) dt = lim n+ (b, t) dt as b-a through A (T). 
o 0 

Then (3.1) implies that 

fn+(a,t)dt= n n-(a,t)dt for each TEB and for each aEA (3.5) 
o 0 

Thus the superscripts "+" and "-" are superfluous in (3.1) and will accordingly be dropped. 
Next, we observe that the properties of the Lebesgue integral imply that if a, b E A(T), then 
a,bEA(a) for each aE[0, T. Let us fix Tr>0 and replace T in (3.1) by a. Let a,bEA(T). By our 
preceding remarks (3.1) makes sense for each a E B. Letting a-*O through B we obtain 

lim bp(x)[rt(x,a)-v(x)]dx=O for all a,b inA(T). (3.6) 
B B aOOJa 

This generalization of the second initial condition of (2.2) is thus implicit in (3.1). It is somewhat 
weaker than the analogous (3.4), which may be interpreted as saying that r(., t) converges 
weakly to u in L1(O, 1). (Cf. [22] for a discussion of modes of convergence weaker than weak 
convergence.) 

Without indulging in the artificial exploitation of (2.7), we now show how (3.1) is equivalent 
to a precisely formulated version of (2.13). Let 4 be a piecewise linear function with support in 
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(a, c) and let 4' be a piecewise linear function with support in [0, ). Let e be a fixed unit vector. 
Then (3.1) implies that 

fjCb(b) {) fIe I[n(b, s) - n(a, s)] ds + f e f f (x, s) dx ds }db dt 

-t f fcIb(b) 4t(t)f p(x)e. [r1(x, t) - v(x)] dx dbdt. (3.7) 

Since 4' is absolutely continuous we can integrate the left side of (3.7) by parts with respect to t 
over [0,rJ. Since +P(T)= 0 and 4(a) = 0, this integration yields the result that the triple integral on 
the left side of (3.7) equals 

-J ffC4b(b),(t)e -n(b, t)dbdt. (3.8a) 

Similarly, the quadruple integral on the left side of (3.7) reduces to 

f TfCc(b)4i(t)e- f(b, t)db dt (3.8b) 

and the right side of (3.7) equals 

I- X f 4 cp(b)4,(t)p(b)e. [r,(x, t) -v(x)]dbdt. (3.9) 

Let us set 
,q(x, t) = O(x)4'(t)e. (3.10) 

Since q has support in (a c) x [0, T), we can use (3.8) and (3.9) to write (3.7) as 

f00 f1[n(x t). qx(x, t) - f(x, t). t(x, t)] dx dt 

= f f p(x)[r,(x, t) - v(x)]. q (x, t) dx dt (311) 

0 0 

for all 71's of the form (3.10) and more generally for all 71's in the space V that is the completion 
of finite linear combinations of functions of the form (3.10) in the norm III = esssup(jlqI + 'q 1). 
(Some properties of this space V are discussed in [31.) Note that this class of q's is larger than 
that used in (2.13) because these 71's need not have support in (0, 1) x (0, oo). Consequently, the 
form of (3.11) is more general than that of (2.13). Equation (3.11) is the Principle of Virtual Work 
or the Weak Form of (2.7). The Weak Form of the Initial-Boundary Value Problem for Elastic 
Strings is obtained by inserting (2.8) and (2.11) into (3.11). Conversely, we can recover (3.1) 
(without the superscripts "+", and "-") from (3.11) by taking q to have the form (3.10) with 

0 for0<x<a, 

x-a fora <x<a+e, 

+(X)= 1 fora+ex<xb-E, (3.12a) 

b-x for b-- <x <b, 

O forbx, 
I1 for 0< t<T, 

+(t)=] 1+ T-t for T<t<T+E, (3.12b) 

108 for T+E< t, 
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and then letting e-*0. In this process, we must evaluate 
iT+e 1 a+e 

limf - | n(x,t).e4(t)dxdt, (3.13) 

which Fubini's Theorem and (3.12b) allow us to rewrite as 

1 ,a+e T, I a+e T+e1 lim n(x,t) edtdx+ lim e ffn n(x, t). e4(t)dt dx. (3.14) 
e--)O, i a E*O L 2 

Now the Lebesgue Differentiation Theorem implies that the first limit in (3.14) is 

fn(a, t).edt (3.15) 

for almost all a in (0, 1) and that the least upper bound of the absolute value of the bracketed 
term in the second limit of (3.14) is finite for almost all (a,T) E (0,1) x (0, oo). Thus (3.13) equals 
(31 14). The other terms are treated similarly. The arbitrariness of e allows it to be canceled in the 
final expression. 

If f is not locally integrable, then the development culminating in (3.5) and (3.6) is not valid. f would not 
be locally integrable if there were concentrated or impulsive forces applied to the string. Such forces could 
be described by measures in the context of (3.1) and by distributions in the context of (3.11). It is not 
evident what class of force measures, when introduced into (3.1), will both yield an effective generalization 
of (3.5) and support a proof of equivalence of suitably generalized versions of (3.1) and (3.11). A 
mathematically natural scale of generalizations of (3.11) can be obtained by the following standard 
procedure: We write (3.11) as 

<o1> 0m (3.16) 

where a accounts for contributions from n, f, and p(rt - v). If we restrict t to belong to a class of functions 
E whose members are smoother than those of V, then we could correspondingly extend < *, > for vj EE to 
a class of a's larger than those studied above. (For example, if E were to consist of infinitely differentiable 
functions j with support in (0,1) x(0, o), then the class of a's are distributions. This choice of E would, 
however, strip (3.11) of its possession of a generalization of (3.6).) This process of extending the bilinear 
form <-, *>, however elegant, still avoids confronting the fundamental physical question of generalizing 
(3.5). 

Even if a physically satisfactory extension of (3.1) were available to account for data as measures, the 
exceptionally challenging problem of actually analyzing such an initial-boundary value problem remains. 
Some, but not all, of the difficulties to be faced in such an analysis can be observed in the recent study [4] 
of a boundary value problem for a single semi-linear elliptic equation. In the beginning of the next section, 
we actually work out the solution of a degenerately simple static problem for a concentrated force on a 
string. One question of physical importance that arises in such analyses is to determine how a sequence of 
solutions corresponding to a sequence of locally integrable data converges as the sequence of data 
converges in some suitable topology to a measure (such as the Dirac measure). The study of concentrated 
and impulsive loads in the linear equations for strings, and in fact for linear differential equations in 
general, is of central importance because the theory yields by superposition solutions for much larger 
classes of data. This is not the case for nonlinear problems. One manifestation of this in the context of 
elastic strings, say, is that not all the derivatives on r can be shifted from cr to the test function j1 in (3.16) by 
integration by parts. Thus, in nonlinear problems concentrated and impulsive forces must be studied only 
for their intrinsic physical or mathematical interest. 

4. The Linearized Equations. Suppose that (2.11) holds and that a-+N0(a,x) is strictly 
increasing from - oo to Xo as a increases from 0 to oo. Let p: [0, 1]--R be integrable. Let 
u(x) = a(x)i where a satisfies the equations 

[No(ax(x),x)]x +p(x) = 0, a(O) =O, a(1) = L. (4. la, b, c) 
If v =0 and if f(x, t) =p(x)i, then to each solution a of (4.1) there corresponds a static solution of 
an appropriately generalized version of the initial boundary value problem (2.1), (2.2), (2.7), 
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(2.8), (2.11) given by r(x, t) = a(x)i. In other words, this r satisfies (3.1) or (3.11) subject to the 
side conditions (3.3) and (3.4), as is easily verified. (This solution r can be shown to be unique 
among sufficiently regular solutions of the initial-boundary value problem.) 

The boundary value problem (4.1) has a unique solution a as the following elementary 
argument shows. Equation (4. la) is equivalent to 

NO(aq(x),x) + P(x) = v(const.), P(x) fp(y)dy, (4.2) 

which in turn is equivalent to 

aq(x) = R(v - P(x),x). (4.3) 

Here R(.,x) is the inverse of No(.,x); R exists by virtue of the assumptions imposed on No. 
Moreover, 83i-R(,8,x) is strictly increasing from 0 to oo as f8 increases from - oo to oo. If No is 
continuously differentiable, then so is R by the implicit function theorem. The integration of 
(4.3) shows that 

a(x) = fA - P(y),y)da (4.4) 

satisfies (4.1a,b) and would satisfy (4.1c) if v could be chosen so that 

J R(v - P(y),y)dy = L. (4.5) 

But vF-+ f 'R(v -P(y),y)dy, just like R(* ,x), is strictly increasing from 0 to oo as v increases from 
-oo to oo, so that (4.5) has a unique solution for v in terms of L. This means that (4.1) has a 
unique solution for a in terms of L and P, which is obtained by substituting the solution v of 
(4.5) into (4.4). Since P is absolutely continuous, equation (4.9) shows that a is continuously 
differentiable, if R is continuous. If p were continuous and R were continuously differentiable, 
then a would be twice continuously differentiable. Note that if the string is uniform (so that No 
is independent of x) and if P = 0, then a = xL. Since No(a,x)- -0oo as a->0, equation (4.3) 
ensures that aX(x)>0 for all x in [0,11 (see (2.4)), so that a is invertible. If NO(l,x) = 0, which 
reflects the eminently reasonable assumption that the reference state is free of tension, and if 
P = 0, then the solution v of (4.5) has the same sign as L -1. (This elementary analysis of the 
existence and uniqueness of a is a primitive prototype of the application of methods of 
monotone operator theory to quasilinear elliptic equations.) 

Let us note that (4.2) is equivalent to (2.11) and (3.1) without the superscripts "+" and "-". Equation 
(4.2) makes sense even when P is not absolutely continuous (i.e., when P is not the indefinite integral of an 
integrable function). The analysis goes through without modification as long as P is a real-valued function, 
e.g., if P were the Heaviside function Hc, cE(O, 1). (Hj(x)=O for x<c and = 1 for x>c.) In this case p 
would be the Dirac delta concentrated at c. The simplicity of this highly degenerate problem is misleading. 
See the discussion at the end of the last section. 

Now let us consider the problem in which u, v, and f have the form 

u(x) = a(x)i + eu1(x),v(x) = ev1(x), f(x, t) =p(x)i + efI(x, t). (4.6) 

Here e represents a small real parameter. Suppose that No(., x) is (p + 1) times continuously 
differentiable. We seek formal solutions of the initial-boundary value problem whose depen- 
dence on the parameter E is specified by 

P ek 

r(x, t, E) = a(x)i + I j-, rk(x, t) + o(eP+ 1). (4.7) 
k-I 

Since 

r(x, t)= akr(x,t,E) rk(~xt)= ae k I 
le-01' 
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we can find the problem formally satisfied by rk by substituting (4.7) into the equations of the 
nonlinear problem, differentiating the resulting equations k times with respect to e, and then 
setting e = 0. We find that the equation for rk involves rl,..., rk - 1; thus the system of equations 
for rl,.. ., rp can be solved recursively. In particular, the equation for r, reduces to 

{No(qx(x),x)(rjx i)i + No(ax(x),x)[ax(x) ]'[(rlx-j)j + (rlx.k)k] }x 
-p(x)rltt -fI(x, t), (4.8) 

where No is the partial derivative of No with respect to its first argument. r, must satisfy the 
boundary conditions 

r1(0, t) = 0, rl(l, t) = 0 (4.9) 
and initial conditions 

rj(x,0) = uj(x), rjt(x, 0) = v1(x). (4.10) 

If f1- i= 0, then (4.8) implies that ,r -i satisfies the scalar wave equation 

[No(qx(x),x)wx]x=p(x)wtt for xE(0, 1),t>0 (4.11) 

where ax is given by (4.3). If we set 

s = a(x), ri (s, t) = r, (a (s), t), p(s) = p(a-' (s)) (4.12) 

if f, j = 0 and f1 k = 0, and if we use (4.2), then we obtain from (4.8) that irj and r k each satisfy 
the scalar wave equation 

{[v-P(a-l(s)) ] wS=(s)wtt for sE(O,L),t>0. (4.13) 

Note that equations (4.11) and (4.13) are uncoupled. 
Equation (4.11) describes the small longitudinal motion of the string (or of a rod) about its 

straight, stretched equilibrium state. Note that both the nonuniformity of the string and the 
presence of P cause the coefficients of (4.11) to depend upon x. (Equation (4.11) is frequently 
cited as a source of Sturm-Liouville problems for ordinary differential equations; these are 
obtained from (4.11) by separation of variables.) Since No is positive by hypothesis, equation 
(4.11) is hyperbolic. 

Equation (4.13) describes the small transverse vibrations of the string. v - P(a -'(s)) is the 
tension of the string at a -(s) in the configuration ai and p is the mass per unit length in this 
configuration. If P = 0, this tension, which is the coefficient of w,, in (4.13), is constant whether 
or not the string is uniform. This tension need not be positive. Where it is, the equation is 
hyperbolic; where it is negative, the equation is elliptic. In the latter case, our initial value 
problem is not well posed. That this is not surprising is apparent from the erratic behavior of a 
rubber band under compression. This same absence of hyperbolicity (where the tension is 
negative) can occur in the full nonlinear equations for elastic strings and represents a source of 
serious technical difficulty. This difficulty can be removed by endowing the string with 
resistance to bending and twisting (i.e., by replacing the string theory with a rod theory) at the 
cost of enlarging the number of equations. These enlarged systems have a number of attractive 
analytic features, which compensate to some extent for their complexity (cf. [2]). 

The left side of (4.8) is exactly the Gateaux differential at ai in the direction r1 of the operator 
rI-+[No(lrx, .)rx/Ilrx x -p(-)rt, from C2([0, 1ix [0, T]) to CO([O, 14x[0, T). For the reasons men- 
tioned at the beginning of Section 3, the domain C2([0, 1] x [0, T]) of this nonlinear operator is 
singularly inappropriate. Thus, we find ourselves in the paradoxical situation of being unable to 
reconcile (4.8), which is easy to analyze, which describes the physics of small vibrations with 
good accuracy, and which is obtained from (2.7), (2.8), (2.11) by a natural but unfortunately 
purely formal process, with the nonlinear system (2.7), (2.8), (2.11), which is derived in a 
geometrically exact way from fundamental physical principles and from a general assumption 
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on the material behavior of the string. I know of no work that gives a mathematically precise 
resolution of this incompatibility, an incompatibility due to the characteristic irregularity of 
solutions of quasilinear hyperbolic systems. 

By examining some related problems, however, it is possible to gain insight into the nature of 
this difficulty and thereby to be in a position to suggest ways to clarify this issue. Let us first 
study the quasilinear system (2.7), (2.8), (2.11). If the partial derivative of N1 with respect to its 
second argument is positive, then this system, which describes the motion of a viscoelastic string 
with internal friction, has a parabolic character. This system can be linearized to produce a 
system like (4.8). If the nonlinear problem is posed in a suitable space of Holder continuous 
functions, then the work of [5] shows that for small e, the (unique) solution of (2.1), (2.2), (2.7), 
(2.8), (2.12) under assumption (4.6) is approximated by (4.7) in the norm of the function space, 
where rl, r2,... satisfy linear problems analogous to (4.8). (This proof is based upon an implicit 
function theorem. For a global analysis of purely longitudinal motion of such viscoelastic 
problems, see [7].) Many weaker frictional mechanisms, described by (2.10), do not destroy the 
hyperbolic character of the governing equations (where the tension is positive). The same is true 
of an elastic string subject to air resistance; this is governed by (2.7), (2.8), (2.11) with f having 
the form - Art, where A is a positive-definite matrix possibly depending on r. The work of [91, 
[18] suggests that for such problems there is a threshold distinguishing "small" from "large" 
initial conditions; solutions with large initial conditions exhibit shocks, those with small initial 
conditions do not. It therefore seems possible to relate an amplitude of the frictional effect to the 
amplitude E of the initial data so that the equation for r, is the vectorial wave equation (4.8), so 
that the nonlinear problem nevertheless has sufficient frictional dissipation to establish the 
requisite threshold for initial data, and so that an implicit function theorem can be used in a 
suitable space to justify (4.7) in a rigorous way. An alternative approach to justifying (4.7) might 
be fashioned on the observation that the equations for an elastic string should have classical 
solutions on a time interval aproaching infinity as the initial data approach zero. 

We have only exhibited the equations for r, of (4.7). A physically illuminating determination 
of r2 and r3 for a string made of a special elastic material was carried out in [6]. A general 
account of such perturbation methods, which describes efficient methods for handling the 
approximating systems (by means of alternative theorems) and which contains an extensive 
bibliography, is given in [12]. 

5. Conclusion. The first steps toward correctly formulated equations for the vibrating string 
were made by Taylor in 1713. In 1743 d'Alembert derived the first explicit partial differential 
equation for the small motion of a heavy string. The correct equations for the large vibrations of 
a string in a plane, equivalent to the planar version of (2.7), were derived by Euler in 1744 by 
taking the limit of the equations for a discrete model. The correct linear equations for the small 
planar transverse motion of a string, which is just the wave equation, was obtained and 
brilliantly analyzed by d'Alembert in 1746. In 1750, Euler stated "Newton's equations of 
motion" and used them to derive the equations of motion for a string in a manner related to the 
one we used in Section 2. The spatial equations of motion for strings were obtained by Lagrange 
in 1761. A critical historical appraisal of these pioneering researches superficially outlined here, 
with full bibliographic references, is given in [20]. The status of the traditional ad hoc 
assumption that every particle on an elastic string moves in a plane perpendicular to i and 
through its position in ui was clarified by J. B. Keller's [111 study of the exact equations. He 
showed that there is but one material for which the particles execute such a motion with the 
string having a sinusoidal shape. 

The proof that n+ = n culminating in (2.6) was obtained by Euler in 1771 and followed 
earlier work of Pardies in 1673 and Jas. Bernoulli in 1691-1704. The theory of stress, which 
generalizes (2.6) to three dimensions, was obtained by Cauchy in 1823-1827. A modern 
generalization of Cauchy's result in a setting that does not rely on his smoothness assumptions is 
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given by [10]. Our proof in Section 3 that n =n- (roughly speaking, as measures) generalizes 
the proof of Section 2 just as the proof of [10] generalizes that of Cauchy. 

The Principle of Virtual Work in the form commonly used today was laid down by Lagrange 
in 1788. The proof in Section 3 that a precisely formulated version of this principle is equivalent 
to precisely formulated Impulse-Momentum Law is roughly modeled on the development of [3] 
for three-dimensional problems of continuous mechanics. The difficulties associated with the 
nature of boundaries of three-dimensional bodies immerse [3] in far deeper questions of analysis 
and measure theory than those confronted in Section 3. Our entire development can be easily 
and naturally extended to describe the behavior of rods, which resist bending and which can 
suffer shear, torsion, and other modes of deformation in addition to the stretching and bending 
that a string undergoes. 

In his derivation of 1744 of the equations of motion of the vibrating string, Euler followed the 
earlier example of Huygens in 1673 and Joh. Bernoulli in 1727 of regarding the equations as the 
limit of those for a finite collection of beads joined by massless springs as the number of beads 
approach infinity while their total mass remains fixed. (Lagrange used a similar approach in 
1759 and in part of his work of 1761. Euler's work subsequent to 1760 did not rely on this 
artifice.) The motion of the system of beads is described by a finite system of ordinary 
differential equations. It is natural to ask: In what sense does the solution of this or of related 
systems of ordinary differential equations approximate the solution of the partial differential 
equations? This question has not been answered for the quasilinear equations of the string. 
Many of the difficulties for elastic strings are similar to those described in Section 4. Accessible 
information for viscoelastic strings would come from the modern exploitation of the weak 
equations (3.11), (2.10) by the Faedo-Galerkin method (cf. [15]). An analysis along these lines 
for a quasilinear engineering model of an elastic string was performed in [8]. This work proves 
the convergence of solutions of a system of ordinary differential equations to the classical 
solution of the partial differential equation on the time interval before the advent of shocks. 

The equations for an elastic string are formally equivalent to the Euler-Lagrange equations 
for the extremization of the Lagrangian functional and the weak version of these equations is 
formally equivalent to the vanishing of the first variation (Gateaux differential) of this func- 
tional. The difficulties associated with the irregularity of solutions of the governing equations 
have so far prevented the exploitation of variational methods for treating these equations. The 
internal friction of viscoelastic strings means that their motion is not conservative and that their 
equations do not have a natural variational characterization. 

Nonlinear wave equations arising in modern physics have been subjected to an intensive, 
fruitful, but by no means exhaustive analysis (cf. [15], [19]). This analysis is possible because 
these equations are semilinear and do not have solutions with shocks. These semilinear 
equations, which are obtained by adding a nonlinear perturbation to the linear wave equation, 
have the form u - u,, +f(u, u.) = 0; they should be contrasted with the quasilinear system (2.7), 
(2.11), in which the coefficients of the highest x-derivatives depend upon the derivative of the 
unknown function. Thus, the nonlinear wave equations arising from the conceptually simple 
field of classical continuum mechanics are harder to analyze than those arising from conceptu- 
ally difficult fields of modern physics. 
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36. What we above all things want is, I believe, a varied production of modernized didactic 
text-books. I have congratulated the Society on the work of recent years, largely inspired by 
itself, in the production of ambitious treatises calculated to exhibit to the inner circle of 
accomplished mathematicians a fuller knowledge of recent mathematical advances, calculated to 
induce those who are already real researchers to research nearer the present confines of known 
mathematical truth, to give larger views to those who are to lead on coming mathematicians. 
The next thing is for those whose views are enlarged to do their duty as leaders by endeavouring 
to secure that the elementary teaching of mathematics be as captivating as ever, but so conveyed 
that thought be encouraged, that attention to logical soundness in fundamentals be enforced as 
essential in real mathematics, and by providing lucid and suggestive introductory works on 
higher subjects, suited to be at once studied by those who have acquired the gift of accurate 
thought and the possession of elementary knowledge. 

- E. B. Elliott, Retiring Presidential Address to the London 
Mathematical Society, 1898 (Proc. London Math. Soc., 
(1) 30 (1899) 17). 
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