FINAL EXAM: SOLUTIONS
Math 207B, Winter 2016

1. [20%] Let J : C*°([a, b]) — R be the functional

J(u) = / f (2 u(z), o (z)) da

where f : R?® — R is a smooth function.
(a) Derive the Euler-Lagrange equation satisfied by stationary points of J.
(b) Show that the Euler-Lagrange equation can be written in the form

d :
%(f_ufu’) - fx
Solution.
e (a) This is standard theory. If u is a stationary point of J then for
every ¢ € C°(a,b)

d

b
:/ {fulz,u,u")p + fu(z,u,u' )¢’} dz

b d
— /a {fu(x,u,u’) — Efu/(x,u,u')} pdx
-0,

so by the fundamental lemma

d
_%fu’ + fu = 0.

(b) Using the chain rule to expand the derivatives and the Euler-
Lagrange equation, we get that

Ll f) = ot fad + fud (u"f; + u%f)
= fot futd + fud = (W' f, + ' f.)
= f,.
This form of the Euler-Lagrange equation is sometimes called the duBois-

Reymond equation. In particular, if f does not depend explicitly on x,
then we have the first integral f — u/f,, = constant.



2. [20%] Let Q@ C R" be a bounded region with smooth boundary 9 and
outward unit normal n. Suppose that u : € — R is the solution of the
Neumann problem for the Helmholtz equation

—Au+u=0 x €€,
ou
— = Q.
o f(z) xr €

Use the formal properties of the d-function and Green’s identity to derive
an integral representation for u(z) in terms of the corresponding Green’s
function G(z,§) that satisfies

—AG+ G =6(x—¢) x € Q,
96 _
on

where the Laplacian and the normal derivative are taken with respect to x.

0 x € 01,

Solution.

e Let A= —A+1 denote the Helmholtz operator. Using Green’s second
identity, we get for any smooth functions u,v : 2 — R that

/Q {uAv — vAu} dz = /Q {u(—Av +v) — v(—Au + u)} do

= / {vAu — uAv} dx (1)
Q

If u, v satisfy homogeneous Neumann conditions, then

/uAvdx:/vAudx,
Q Q

so the Neumann Helmholtz operator (with a suitably defined domain)
is self-adjoint in L?(12).

e Taking v(x) = G(z,€) in (1) and using the PDEs and boundary con-
ditions satisfied by u and G, we get that

/Q w(2)d(x — &) dr = / G, €)f(x) dS(z).

onN

2



SO

ul€) = /8 Gz, €)f(2) dS(a)

e Since A is self-adjoint, the Green’s function G(z,§) is symmetric, and
we can also write this representation as

ulz) = / Gl (6 dS(6),

corresponding to the response due to a point-source distribution on the
boundary with density f.



3. [30%] Let 0 < k < m, and consider the following BVP:

—u" = Ku+ f(z), 0<z<l,
u'(0) = A, u'(1) = B.

(a) Let G(x,&; k) be the Green’s function that satisfies

— Gaw = K*G +6(z - 6), 0<z<l,
G.(0,& k) =0, G.(1,& k) = 0.

Give an integral representation of the solution u(z) of (2) in terms of G(z, &; k),
the function f(z), and the constants A, B.

(b) Compute the Green’s function G(z,¢;k) explicitly. Hint. Note that
sin(z + y) = sinx cosy + cos x sin y.

(c) Let
H(z,& k) =G(x,& k) + %

Show that H has a finite limit as & — 07. What is the significance of the
limiting function?

Solution.

o Let L = —d?/dz* — k*. By Green’s identity, we have
1
| w@L6 6k - Gl ) Lu(e) da
0

/ {—uw(2)Gap(z,& k) + G2, & k)ug,(z)} da
=[G (2, & k)ua(z) — u(2)Golz, & k)],
which gives
/0 {u(@)8(z — €) — Gla.&: 1) f(2)} de = G(L&K)B — G(0,£ k) A

and therefore

ul€) = / G, € k) f(x) de + G(1,6: k)B — G(0,6: k) A



e Alternatively, using the symmetry of G(x,&; k), we can write the rep-
resentation as

u(z) = /0 Gz, & k) f(&)dE + Gz, 1;k)B — G(z,0; k) A.

(b) Solving the homogeneous ODE and imposing the Neumann condi-
tion at the appropriate end-point, we find that

Glo. k) = M(§) cos kx ?f0§x<§,
N(§)cosk(l—z) ife¢<ax<1
for suitable functions of integration M, N.
e The Green’s function G(z,§; k) is continuous at x = ¢ if

M(§) = C(§)cosk(l =&),  N(&) = C(§) cos kg

for some function C. The jump condition —[G,] = 1 at z = & then
gives

—C{kcoskEsink(l — &) + kcosk(l —§)sinké} =1,
or —Cksink = 1.

e [t follows that

" cos(kx) cos[k(1l — x)],

where . = min(z,§) and - = max(z,§).

e (c) Expanding the terms in the Green’s function in power series about
k =0, we get that

— 1 =L1r222 ] 1 — LK2(1 — 22)?
Gz, & k) = 13 k;]([_l;Q)( >”+o(k2>
6
o 1_12 2 1_121_ 2 1 1.2
_ [1— k2] | 2:2( v>)°] [1+ 547 Ok
1 1 1 1



It follows that

1
G(x,f;k)+@—>GM(x,§) as k — 0T
where 1 . 1
GM(LU,f) = §$2< -+ 5(1 — SL’>)2 — 6

e The function G, is the generalized Green’s functions for the £ = 0
problem, as one can verify directly. The term 1/\, with A = k2, can-
cels the simple pole in the Green’s function G(x,&; \) of the Neumann
operator —d?/dz? at the eigenvalue A = 0.



4. [30%] Consider the following eigenvalue problem for a forth-order ODE
(using the notation u® = diu/dz*):

u® = \u 0<zx <,
u(0) = u"(0) =0, u(l) =u"(1) = 0.

(a) Show that the operator A = d*/dz* with these boundary conditions is
self-adjoint with respect to the standard L?-inner product, so all eigenvalues
A are real.

(b) Show that every eigenvalue satisfies A > 0. Hint. Multiply the ODE by

u” and integrate by parts.

(c) Show that all of the eigenvalues and eigenfunctions are given by \,, = n*r?
and u,(z) = sin(nmx) where n = 1,2,3,....

(d) Use separation of variables to solve the following IBVP for u(x,t):

U + Uggpe = 0 O<ax<1,t>0
w(0,t) = uu(0,8) =0, u(1,t) = uge(1,t) =0,
u(z,0) = f(x)

How does the solution behave as t — 0o?

Solution.

e (a) Integrating by parts, we get that

1 1
/ uAv dx = / uv® dx
0 0
1
_ [UU///](I) _/ ’LL/UW dr
0
1
_ [uv///_u/v//](l)+/ u"v” dr.
0
Similarly,
1 ) 1
/ vAudz = [vu”" — v'u"), —|—/ v"u" d.
0 0
It follows that

1

1

/ (uwAv — vAu) dr = [w" — u'v" +u"v" —u"v),
0



The boundary terms vanish if both u, v satisfy the given homogeneous
boundary conditions, so

1 1
/ uAvdr = / vAudzx,
0 0

meaning that A is self-adjoint.

(b) Suppose that u is a nonzero solution of the eigenvalue problem
corresponding to an eigenvalue A. Then

1 1
/ u'u® dx = \ / u'udzx.
0 0

Integration by parts gives
1 1
/ u//u(4) dr = [u//u///](l) _/ (u///)Z dl’,
0 0

1 1
/ u"udr = [u'u] — / (u')? d.
0 0

The boundary terms vanish, so

1
fo (u///)2 d&? -

- fol(u/)2dx B

Note that the denominator is nonzero, since u is a constant if v’ = 0,
and then the boundary conditions imply that u = 0.

If fol(u”’)2 dz = 0, then v” = 0, meaning that u(z) = A + Bz + Cx?
is a quadratic function. The boundary conditions at x = 0 imply that
A = C = 0, and then the boundary conditions at x = 1 imply that
B =0, so u=0. It follows that A = 0 is not an eigenvalue and A > 0.

(c¢) The characteristic equation of the ODE, for solutions u(z) = €'?,
is 7* = \. Since the eigenvalues \ are real and positive, we can write
A = k* with £ > 0, and the roots of the characteristic equation are
r = £k, £ik. The general solution of the ODE is therefore

u(z) = Acoskx + Bsinkx + C cosh kx + D sinh kx.



The boundary conditions at z = 0 imply that A+C' =0 and —A+4+C =
0, s0 A= C = 0. The boundary conditions at = 1 then imply that

Bsink + Dsinhk =0, —Bsink 4+ Dsinh k = 0.

It follows that Dsinhk = 0, so D = 0 since sinhk # 0 for £ # 0. In
addition, Bsink = 0, so B = 0 unless sink = 0, which means that
k=nm, X\ =n'r! and u(z) = Bsin(nrx) withn =1,2,3,....
(d) Looking for separated solutions u(x,t) = F(z)G(t) of the PDE, we
find that

G'" FW

— =0.
¢ F

Introducing a separation constant A such that G'/G = —\, we get that
G(t) = Ce ™ and F(x) is a solution of the eigenvalue problem

FW =)\F,  F0)=F"0)=0, FQ1)=F"(1)=0.
From the previous results, A = n*7? and F(z) = sin(nnz).

Superposing these separated solutions, we get
o0
4_4,
u(z,t) = Z bpe” ™ ™ tsin(nmr).
n=1
The initial condition is satisfied if
oo
flz) = Z b, sin(nmx),
n=1
so b, is the Fourier-sine coefficient of f,

b, = 2/0 f(z)sin(nrz) dx.



