Final Exam: Solutions

Math 207B, Winter 2016

1. [20\%] Let $J: C^{\infty}([a, b]) \rightarrow \mathbb{R}$ be the functional

$$
J(u)=\int_{a}^{b} f\left(x, u(x), u^{\prime}(x)\right) d x
$$

where $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function.
(a) Derive the Euler-Lagrange equation satisfied by stationary points of J.
(b) Show that the Euler-Lagrange equation can be written in the form

$$
\frac{d}{d x}\left(f-u^{\prime} f_{u^{\prime}}\right)=f_{x}
$$

Solution.

- (a) This is standard theory. If u is a stationary point of J then for every $\phi \in C_{c}^{\infty}(a, b)$

$$
\begin{aligned}
\left.\frac{d}{d \epsilon} J(u+\epsilon \phi)\right|_{\epsilon=0} & =\int_{a}^{b}\left\{f_{u}\left(x, u, u^{\prime}\right) \phi+f_{u^{\prime}}\left(x, u, u^{\prime}\right) \phi^{\prime}\right\} d x \\
& =\int_{a}^{b}\left\{f_{u}\left(x, u, u^{\prime}\right)-\frac{d}{d x} f_{u^{\prime}}\left(x, u, u^{\prime}\right)\right\} \phi d x \\
& =0
\end{aligned}
$$

so by the fundamental lemma

$$
-\frac{d}{d x} f_{u^{\prime}}+f_{u}=0
$$

(b) Using the chain rule to expand the derivatives and the EulerLagrange equation, we get that

$$
\begin{aligned}
\frac{d}{d x}\left(f-u^{\prime} f_{u^{\prime}}\right) & =f_{x}+f_{u} u^{\prime}+f_{u^{\prime}} u^{\prime \prime}-\left(u^{\prime \prime} f_{u}^{\prime}+u^{\prime} \frac{d}{d x} f_{u^{\prime}}\right) \\
& =f_{x}+f_{u} u^{\prime}+f_{u^{\prime}} u^{\prime \prime}-\left(u^{\prime \prime} f_{u}^{\prime}+u^{\prime} f_{u}\right) \\
& =f_{x}
\end{aligned}
$$

This form of the Euler-Lagrange equation is sometimes called the duBoisReymond equation. In particular, if f does not depend explicitly on x, then we have the first integral $f-u^{\prime} f_{u^{\prime}}=$ constant.
2. $[20 \%]$ Let $\Omega \subset \mathbb{R}^{n}$ be a bounded region with smooth boundary $\partial \Omega$ and outward unit normal n. Suppose that $u: \bar{\Omega} \rightarrow \mathbb{R}$ is the solution of the Neumann problem for the Helmholtz equation

$$
\begin{array}{rlrl}
-\Delta u+u & =0 & x \in \Omega, \\
\frac{\partial u}{\partial n} & =f(x) & x \in \partial \Omega .
\end{array}
$$

Use the formal properties of the δ-function and Green's identity to derive an integral representation for $u(x)$ in terms of the corresponding Green's function $G(x, \xi)$ that satisfies

$$
\begin{aligned}
-\Delta G+G & =\delta(x-\xi) & & x \in \Omega \\
\frac{\partial G}{\partial n} & =0 & & x \in \partial \Omega
\end{aligned}
$$

where the Laplacian and the normal derivative are taken with respect to x.

Solution.

- Let $A=-\Delta+1$ denote the Helmholtz operator. Using Green's second identity, we get for any smooth functions $u, v: \bar{\Omega} \rightarrow \mathbb{R}$ that

$$
\begin{align*}
\int_{\Omega}\{u A v-v A u\} d x & =\int_{\Omega}\{u(-\Delta v+v)-v(-\Delta u+u)\} d x \\
& =\int_{\Omega}\{v \Delta u-u \Delta v\} d x \tag{1}\\
& =\int_{\partial \Omega}\left\{v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n}\right\} d S
\end{align*}
$$

If u, v satisfy homogeneous Neumann conditions, then

$$
\int_{\Omega} u A v d x=\int_{\Omega} v A u d x
$$

so the Neumann Helmholtz operator (with a suitably defined domain) is self-adjoint in $L^{2}(\Omega)$.

- Taking $v(x)=G(x, \xi)$ in (1) and using the PDEs and boundary conditions satisfied by u and G, we get that

$$
\int_{\Omega} u(x) \delta(x-\xi) d x=\int_{\partial \Omega} G(x, \xi) f(x) d S(x)
$$

SO

$$
u(\xi)=\int_{\partial \Omega} G(x, \xi) f(x) d S(x) .
$$

- Since A is self-adjoint, the Green's function $G(x, \xi)$ is symmetric, and we can also write this representation as

$$
u(x)=\int_{\partial \Omega} G(x, \xi) f(\xi) d S(\xi)
$$

corresponding to the response due to a point-source distribution on the boundary with density f.
3. [30\%] Let $0<k<\pi$, and consider the following BVP:

$$
\begin{align*}
-u^{\prime \prime} & =k^{2} u+f(x), \quad 0<x<1, \tag{2}\\
u^{\prime}(0) & =A, \quad u^{\prime}(1)=B .
\end{align*}
$$

(a) Let $G(x, \xi ; k)$ be the Green's function that satisfies

$$
\begin{aligned}
& -G_{x x}=k^{2} G+\delta(x-\xi), \quad 0<x<1 \\
& G_{x}(0, \xi ; k)=0, \quad G_{x}(1, \xi ; k)=0
\end{aligned}
$$

Give an integral representation of the solution $u(x)$ of (2) in terms of $G(x, \xi ; k)$, the function $f(x)$, and the constants A, B.
(b) Compute the Green's function $G(x, \xi ; k)$ explicitly. Hint. Note that $\sin (x+y)=\sin x \cos y+\cos x \sin y$.
(c) Let

$$
H(x, \xi ; k)=G(x, \xi ; k)+\frac{1}{k^{2}} .
$$

Show that H has a finite limit as $k \rightarrow 0^{+}$. What is the significance of the limiting function?

Solution.

- Let $L=-d^{2} / d x^{2}-k^{2}$. By Green's identity, we have

$$
\begin{aligned}
\int_{0}^{1}\{u(x) & L G(x, \xi ; k)-G(x, \xi ; k) L u(x)\} d x \\
& =\int_{0}^{1}\left\{-u(x) G_{x x}(x, \xi ; k)+G(x, \xi ; k) u_{x x}(x)\right\} d x \\
= & {\left[G(x, \xi ; k) u_{x}(x)-u(x) G_{x}(x, \xi ; k)\right]_{x=0}^{x=1} }
\end{aligned}
$$

which gives

$$
\int_{0}^{1}\{u(x) \delta(x-\xi)-G(x, \xi ; k) f(x)\} d x=G(1, \xi ; k) B-G(0, \xi ; k) A
$$

and therefore

$$
u(\xi)=\int_{0}^{1} G(x, \xi ; k) f(x) d x+G(1, \xi ; k) B-G(0, \xi ; k) A
$$

- Alternatively, using the symmetry of $G(x, \xi ; k)$, we can write the representation as

$$
u(x)=\int_{0}^{1} G(x, \xi ; k) f(\xi) d \xi+G(x, 1 ; k) B-G(x, 0 ; k) A
$$

(b) Solving the homogeneous ODE and imposing the Neumann condition at the appropriate end-point, we find that

$$
G(x, \xi ; k)= \begin{cases}M(\xi) \cos k x & \text { if } 0 \leq x<\xi, \\ N(\xi) \cos k(1-x) & \text { if } \xi<x \leq 1\end{cases}
$$

for suitable functions of integration M, N.

- The Green's function $G(x, \xi ; k)$ is continuous at $x=\xi$ if

$$
M(\xi)=C(\xi) \cos k(1-\xi), \quad N(\xi)=C(\xi) \cos k \xi
$$

for some function C. The jump condition $-\left[G_{x}\right]=1$ at $x=\xi$ then gives

$$
-C\{k \cos k \xi \sin k(1-\xi)+k \cos k(1-\xi) \sin k \xi\}=1
$$

or $-C k \sin k=1$.

- It follows that

$$
G(x, \xi ; k)=-\frac{1}{k \sin k} \cos \left(k x_{<}\right) \cos \left[k\left(1-x_{>}\right)\right],
$$

where $x_{<}=\min (x, \xi)$ and $x_{>}=\max (x, \xi)$.

- (c) Expanding the terms in the Green's function in power series about $k=0$, we get that

$$
\begin{aligned}
G(x, \xi ; k) & =\frac{-\left[1-\frac{1}{2} k^{2} x_{<}^{2}\right]\left[1-\frac{1}{2} k^{2}\left(1-x_{>}\right)^{2}\right]}{k^{2}\left(1-\frac{1}{6} k^{2}\right)}+O\left(k^{2}\right) \\
& =\frac{-\left[1-\frac{1}{2} k^{2} x_{<}^{2}\right]\left[1-\frac{1}{2} k^{2}\left(1-x_{>}\right)^{2}\right]\left[1+\frac{1}{6} k^{2}\right]}{k^{2}}+O\left(k^{2}\right) \\
& =-\frac{1}{k^{2}}+\frac{1}{2} x_{<}^{2}+\frac{1}{2}\left(1-x_{>}\right)^{2}-\frac{1}{6}+O\left(k^{2}\right) .
\end{aligned}
$$

It follows that

$$
G(x, \xi ; k)+\frac{1}{k^{2}} \rightarrow G_{M}(x, \xi) \quad \text { as } k \rightarrow 0^{+}
$$

where

$$
G_{M}(x, \xi)=\frac{1}{2} x_{<}^{2}+\frac{1}{2}\left(1-x_{>}\right)^{2}-\frac{1}{6} .
$$

- The function G_{M} is the generalized Green's functions for the $k=0$ problem, as one can verify directly. The term $1 / \lambda$, with $\lambda=k^{2}$, cancels the simple pole in the Green's function $G(x, \xi ; \lambda)$ of the Neumann operator $-d^{2} / d x^{2}$ at the eigenvalue $\lambda=0$.

4. $[30 \%]$ Consider the following eigenvalue problem for a forth-order ODE (using the notation $u^{(4)}=d^{4} u / d x^{4}$):

$$
\begin{aligned}
& u^{(4)}=\lambda u \quad 0<x<1, \\
& u(0)=u^{\prime \prime}(0)=0, \quad u(1)=u^{\prime \prime}(1)=0 .
\end{aligned}
$$

(a) Show that the operator $A=d^{4} / d x^{4}$ with these boundary conditions is self-adjoint with respect to the standard L^{2}-inner product, so all eigenvalues λ are real.
(b) Show that every eigenvalue satisfies $\lambda>0$. Hint. Multiply the ODE by $u^{\prime \prime}$ and integrate by parts.
(c) Show that all of the eigenvalues and eigenfunctions are given by $\lambda_{n}=n^{4} \pi^{4}$ and $u_{n}(x)=\sin (n \pi x)$ where $n=1,2,3, \ldots$.
(d) Use separation of variables to solve the following IBVP for $u(x, t)$:

$$
\begin{array}{lr}
u_{t}+u_{x x x x}=0 & 0<x<1, t>0 \\
u(0, t)=u_{x x}(0, t)=0, & u(1, t)=u_{x x}(1, t)=0 \\
u(x, 0)=f(x) &
\end{array}
$$

How does the solution behave as $t \rightarrow \infty$?

Solution.

- (a) Integrating by parts, we get that

$$
\begin{aligned}
\int_{0}^{1} u A v d x & =\int_{0}^{1} u v^{(4)} d x \\
& =\left[u v^{\prime \prime \prime}\right]_{0}^{1}-\int_{0}^{1} u^{\prime} v^{\prime \prime \prime} d x \\
& =\left[u v^{\prime \prime \prime}-u^{\prime} v^{\prime \prime}\right]_{0}^{1}+\int_{0}^{1} u^{\prime \prime} v^{\prime \prime} d x .
\end{aligned}
$$

Similarly,

$$
\int_{0}^{1} v A u d x=\left[v u^{\prime \prime \prime}-v^{\prime} u^{\prime \prime}\right]_{0}^{1}+\int_{0}^{1} v^{\prime \prime} u^{\prime \prime} d x .
$$

It follows that

$$
\int_{0}^{1}(u A v-v A u) d x=\left[u v^{\prime \prime \prime}-u^{\prime} v^{\prime \prime}+u^{\prime \prime} v^{\prime}-u^{\prime \prime \prime} v\right]_{0}^{1}
$$

- The boundary terms vanish if both u, v satisfy the given homogeneous boundary conditions, so

$$
\int_{0}^{1} u A v d x=\int_{0}^{1} v A u d x
$$

meaning that A is self-adjoint.

- (b) Suppose that u is a nonzero solution of the eigenvalue problem corresponding to an eigenvalue λ. Then

$$
\int_{0}^{1} u^{\prime \prime} u^{(4)} d x=\lambda \int_{0}^{1} u^{\prime \prime} u d x
$$

Integration by parts gives

$$
\begin{aligned}
\int_{0}^{1} u^{\prime \prime} u^{(4)} d x & =\left[u^{\prime \prime} u^{\prime \prime \prime}\right]_{0}^{1}-\int_{0}^{1}\left(u^{\prime \prime \prime}\right)^{2} d x \\
\int_{0}^{1} u^{\prime \prime} u d x & =\left[u^{\prime} u\right]_{0}^{1}-\int_{0}^{1}\left(u^{\prime}\right)^{2} d x
\end{aligned}
$$

The boundary terms vanish, so

$$
\lambda=\frac{\int_{0}^{1}\left(u^{\prime \prime \prime}\right)^{2} d x}{\int_{0}^{1}\left(u^{\prime}\right)^{2} d x} \geq 0
$$

Note that the denominator is nonzero, since u is a constant if $u^{\prime}=0$, and then the boundary conditions imply that $u=0$.

- If $\int_{0}^{1}\left(u^{\prime \prime \prime}\right)^{2} d x=0$, then $u^{\prime \prime \prime}=0$, meaning that $u(x)=A+B x+C x^{2}$ is a quadratic function. The boundary conditions at $x=0$ imply that $A=C=0$, and then the boundary conditions at $x=1$ imply that $B=0$, so $u=0$. It follows that $\lambda=0$ is not an eigenvalue and $\lambda>0$.
- (c) The characteristic equation of the ODE, for solutions $u(x)=e^{r x}$, is $r^{4}=\lambda$. Since the eigenvalues λ are real and positive, we can write $\lambda=k^{4}$ with $k>0$, and the roots of the characteristic equation are $r= \pm k, \pm i k$. The general solution of the ODE is therefore

$$
u(x)=A \cos k x+B \sin k x+C \cosh k x+D \sinh k x .
$$

- The boundary conditions at $x=0$ imply that $A+C=0$ and $-A+C=$ 0 , so $A=C=0$. The boundary conditions at $x=1$ then imply that

$$
B \sin k+D \sinh k=0, \quad-B \sin k+D \sinh k=0
$$

It follows that $D \sinh k=0$, so $D=0$ since $\sinh k \neq 0$ for $k \neq 0$. In addition, $B \sin k=0$, so $B=0$ unless $\sin k=0$, which means that $k=n \pi, \lambda=n^{4} \pi^{4}$, and $u(x)=B \sin (n \pi x)$ with $n=1,2,3, \ldots$.

- (d) Looking for separated solutions $u(x, t)=F(x) G(t)$ of the PDE, we find that

$$
\frac{G^{\prime}}{G}+\frac{F^{(4)}}{F}=0 .
$$

Introducing a separation constant λ such that $G^{\prime} / G=-\lambda$, we get that $G(t)=C e^{-\lambda t}$ and $F(x)$ is a solution of the eigenvalue problem

$$
F^{(4)}=\lambda F, \quad F(0)=F^{\prime \prime}(0)=0, \quad F(1)=F^{\prime \prime}(1)=0 .
$$

From the previous results, $\lambda=n^{4} \pi^{4}$ and $F(x)=\sin (n \pi x)$.

- Superposing these separated solutions, we get

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{4} \pi^{4} t} \sin (n \pi x)
$$

- The initial condition is satisfied if

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)
$$

so b_{n} is the Fourier-sine coefficient of f,

$$
b_{n}=2 \int_{0}^{1} f(x) \sin (n \pi x) d x
$$

