
Final Exam: Solutions
Math 207B, Winter 2016

1. [20%] Let J : C∞([a, b])→ R be the functional

J(u) =

∫ b

a

f (x, u(x), u′(x)) dx

where f : R3 → R is a smooth function.

(a) Derive the Euler-Lagrange equation satisfied by stationary points of J .

(b) Show that the Euler-Lagrange equation can be written in the form

d

dx
(f − u′fu′) = fx.

Solution.

• (a) This is standard theory. If u is a stationary point of J then for
every φ ∈ C∞c (a, b)

d

dε
J(u+ εφ)

∣∣∣∣
ε=0

=

∫ b

a

{fu(x, u, u′)φ+ fu′(x, u, u
′)φ′} dx

=

∫ b

a

{
fu(x, u, u

′)− d

dx
fu′(x, u, u

′)

}
φ dx

= 0,

so by the fundamental lemma

− d

dx
fu′ + fu = 0.

(b) Using the chain rule to expand the derivatives and the Euler-
Lagrange equation, we get that

d

dx
(f − u′fu′) = fx + fuu

′ + fu′u
′′ −

(
u′′f ′u + u′

d

dx
fu′

)
= fx + fuu

′ + fu′u
′′ − (u′′f ′u + u′fu)

= fx.

This form of the Euler-Lagrange equation is sometimes called the duBois-
Reymond equation. In particular, if f does not depend explicitly on x,
then we have the first integral f − u′fu′ = constant.
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2. [20%] Let Ω ⊂ Rn be a bounded region with smooth boundary ∂Ω and
outward unit normal n. Suppose that u : Ω → R is the solution of the
Neumann problem for the Helmholtz equation

−∆u+ u = 0 x ∈ Ω,

∂u

∂n
= f(x) x ∈ ∂Ω.

Use the formal properties of the δ-function and Green’s identity to derive
an integral representation for u(x) in terms of the corresponding Green’s
function G(x, ξ) that satisfies

−∆G+G = δ(x− ξ) x ∈ Ω,

∂G

∂n
= 0 x ∈ ∂Ω,

where the Laplacian and the normal derivative are taken with respect to x.

Solution.

• Let A = −∆ + 1 denote the Helmholtz operator. Using Green’s second
identity, we get for any smooth functions u, v : Ω→ R that∫

Ω

{uAv − vAu} dx =

∫
Ω

{u(−∆v + v)− v(−∆u+ u)} dx

=

∫
Ω

{v∆u− u∆v} dx

=

∫
∂Ω

{
v
∂u

∂n
− u∂v

∂n

}
dS.

(1)

If u, v satisfy homogeneous Neumann conditions, then∫
Ω

uAv dx =

∫
Ω

vAu dx,

so the Neumann Helmholtz operator (with a suitably defined domain)
is self-adjoint in L2(Ω).

• Taking v(x) = G(x, ξ) in (1) and using the PDEs and boundary con-
ditions satisfied by u and G, we get that∫

Ω

u(x)δ(x− ξ) dx =

∫
∂Ω

G(x, ξ)f(x) dS(x),
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so

u(ξ) =

∫
∂Ω

G(x, ξ)f(x) dS(x).

• Since A is self-adjoint, the Green’s function G(x, ξ) is symmetric, and
we can also write this representation as

u(x) =

∫
∂Ω

G(x, ξ)f(ξ) dS(ξ),

corresponding to the response due to a point-source distribution on the
boundary with density f .
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3. [30%] Let 0 < k < π, and consider the following BVP:

− u′′ = k2u+ f(x), 0 < x < 1,

u′(0) = A, u′(1) = B.
(2)

(a) Let G(x, ξ; k) be the Green’s function that satisfies

−Gxx = k2G+ δ(x− ξ), 0 < x < 1,

Gx(0, ξ; k) = 0, Gx(1, ξ; k) = 0.

Give an integral representation of the solution u(x) of (2) in terms ofG(x, ξ; k),
the function f(x), and the constants A, B.

(b) Compute the Green’s function G(x, ξ; k) explicitly. Hint. Note that
sin(x+ y) = sin x cos y + cosx sin y.

(c) Let

H(x, ξ; k) = G(x, ξ; k) +
1

k2
.

Show that H has a finite limit as k → 0+. What is the significance of the
limiting function?

Solution.

• Let L = −d2/dx2 − k2. By Green’s identity, we have∫ 1

0

{u(x)LG(x, ξ; k)−G(x, ξ; k)Lu(x)} dx

=

∫ 1

0

{−u(x)Gxx(x, ξ; k) +G(x, ξ; k)uxx(x)} dx

= [G(x, ξ; k)ux(x)− u(x)Gx(x, ξ; k)]x=1
x=0

which gives∫ 1

0

{u(x)δ(x− ξ)−G(x, ξ; k)f(x)} dx = G(1, ξ; k)B −G(0, ξ; k)A,

and therefore

u(ξ) =

∫ 1

0

G(x, ξ; k)f(x) dx+G(1, ξ; k)B −G(0, ξ; k)A.
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• Alternatively, using the symmetry of G(x, ξ; k), we can write the rep-
resentation as

u(x) =

∫ 1

0

G(x, ξ; k)f(ξ) dξ +G(x, 1; k)B −G(x, 0; k)A.

(b) Solving the homogeneous ODE and imposing the Neumann condi-
tion at the appropriate end-point, we find that

G(x, ξ; k) =

{
M(ξ) cos kx if 0 ≤ x < ξ,

N(ξ) cos k(1− x) if ξ < x ≤ 1

for suitable functions of integration M , N .

• The Green’s function G(x, ξ; k) is continuous at x = ξ if

M(ξ) = C(ξ) cos k(1− ξ), N(ξ) = C(ξ) cos kξ

for some function C. The jump condition −[Gx] = 1 at x = ξ then
gives

−C {k cos kξ sin k(1− ξ) + k cos k(1− ξ) sin kξ} = 1,

or −Ck sin k = 1.

• It follows that

G(x, ξ; k) = − 1

k sin k
cos(kx<) cos[k(1− x>)],

where x< = min(x, ξ) and x> = max(x, ξ).

• (c) Expanding the terms in the Green’s function in power series about
k = 0, we get that

G(x, ξ; k) =
−
[
1− 1

2
k2x2

<

] [
1− 1

2
k2(1− x>)2

]
k2
(
1− 1

6
k2
) +O(k2)

=
−
[
1− 1

2
k2x2

<

] [
1− 1

2
k2(1− x>)2

] [
1 + 1

6
k2
]

k2
+O(k2)

= − 1

k2
+

1

2
x2
< +

1

2
(1− x>)2 − 1

6
+O(k2).
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It follows that

G(x, ξ; k) +
1

k2
→ GM(x, ξ) as k → 0+

where

GM(x, ξ) =
1

2
x2
< +

1

2
(1− x>)2 − 1

6
.

• The function GM is the generalized Green’s functions for the k = 0
problem, as one can verify directly. The term 1/λ, with λ = k2, can-
cels the simple pole in the Green’s function G(x, ξ;λ) of the Neumann
operator −d2/dx2 at the eigenvalue λ = 0.
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4. [30%] Consider the following eigenvalue problem for a forth-order ODE
(using the notation u(4) = d4u/dx4):

u(4) = λu 0 < x < 1,

u(0) = u′′(0) = 0, u(1) = u′′(1) = 0.

(a) Show that the operator A = d4/dx4 with these boundary conditions is
self-adjoint with respect to the standard L2-inner product, so all eigenvalues
λ are real.

(b) Show that every eigenvalue satisfies λ > 0. Hint. Multiply the ODE by
u′′ and integrate by parts.

(c) Show that all of the eigenvalues and eigenfunctions are given by λn = n4π4

and un(x) = sin(nπx) where n = 1, 2, 3, . . . .

(d) Use separation of variables to solve the following IBVP for u(x, t):

ut + uxxxx = 0 0 < x < 1, t > 0

u(0, t) = uxx(0, t) = 0, u(1, t) = uxx(1, t) = 0,

u(x, 0) = f(x)

How does the solution behave as t→∞?

Solution.

• (a) Integrating by parts, we get that∫ 1

0

uAv dx =

∫ 1

0

uv(4) dx

= [uv′′′]
1
0 −

∫ 1

0

u′v′′′ dx

= [uv′′′ − u′v′′]10 +

∫ 1

0

u′′v′′ dx.

Similarly, ∫ 1

0

vAu dx = [vu′′′ − v′u′′]10 +

∫ 1

0

v′′u′′ dx.

It follows that∫ 1

0

(uAv − vAu) dx = [uv′′′ − u′v′′ + u′′v′ − u′′′v]
1
0
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• The boundary terms vanish if both u, v satisfy the given homogeneous
boundary conditions, so∫ 1

0

uAv dx =

∫ 1

0

vAu dx,

meaning that A is self-adjoint.

• (b) Suppose that u is a nonzero solution of the eigenvalue problem
corresponding to an eigenvalue λ. Then∫ 1

0

u′′u(4) dx = λ

∫ 1

0

u′′u dx.

Integration by parts gives∫ 1

0

u′′u(4) dx = [u′′u′′′]
1
0 −

∫ 1

0

(u′′′)2 dx,∫ 1

0

u′′u dx = [u′u]
1
0 −

∫ 1

0

(u′)2 dx.

The boundary terms vanish, so

λ =

∫ 1

0
(u′′′)2 dx∫ 1

0
(u′)2 dx

≥ 0.

Note that the denominator is nonzero, since u is a constant if u′ = 0,
and then the boundary conditions imply that u = 0.

• If
∫ 1

0
(u′′′)2 dx = 0, then u′′′ = 0, meaning that u(x) = A + Bx + Cx2

is a quadratic function. The boundary conditions at x = 0 imply that
A = C = 0, and then the boundary conditions at x = 1 imply that
B = 0, so u = 0. It follows that λ = 0 is not an eigenvalue and λ > 0.

• (c) The characteristic equation of the ODE, for solutions u(x) = erx,
is r4 = λ. Since the eigenvalues λ are real and positive, we can write
λ = k4 with k > 0, and the roots of the characteristic equation are
r = ±k,±ik. The general solution of the ODE is therefore

u(x) = A cos kx+B sin kx+ C cosh kx+D sinh kx.
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• The boundary conditions at x = 0 imply that A+C = 0 and −A+C =
0, so A = C = 0. The boundary conditions at x = 1 then imply that

B sin k +D sinh k = 0, −B sin k +D sinh k = 0.

It follows that D sinh k = 0, so D = 0 since sinh k 6= 0 for k 6= 0. In
addition, B sin k = 0, so B = 0 unless sin k = 0, which means that
k = nπ, λ = n4π4, and u(x) = B sin(nπx) with n = 1, 2, 3, . . . .

• (d) Looking for separated solutions u(x, t) = F (x)G(t) of the PDE, we
find that

G′

G
+
F (4)

F
= 0.

Introducing a separation constant λ such that G′/G = −λ, we get that
G(t) = Ce−λt and F (x) is a solution of the eigenvalue problem

F (4) = λF, F (0) = F ′′(0) = 0, F (1) = F ′′(1) = 0.

From the previous results, λ = n4π4 and F (x) = sin(nπx).

• Superposing these separated solutions, we get

u(x, t) =
∞∑
n=1

bne
−n4π4t sin(nπx).

• The initial condition is satisfied if

f(x) =
∞∑
n=1

bn sin(nπx),

so bn is the Fourier-sine coefficient of f ,

bn = 2

∫ 1

0

f(x) sin(nπx) dx.
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