
Midterm: Solutions
Math 207B, Winter 2016

1. Let p, q, r : [a, b] → R be smooth functions with p, r > 0. Suppose that
u : [a, b] → R is a smooth extremal over all functions in C1([a, b]) of the
functional

J(u) =
1

2

∫ b

a

{
p(x)u′2(x) + q(x)u2(x)

}
dx

subject to the constraint K(u) = 1, where

K(u) =
1

2

∫ b

a

r(x)u2(x) dx.

Show that u is an eigenfunction of the weighted Sturm-Liouville eigenvalue
problem

− (pu′)′ + qu = λru a < x < b,

u′(a) = 0, u′(b) = 0.

Solution.

• Introduce a Lagrange multiplier λ. Then u is an unconstrained ex-
tremal of

I(u, λ) = J(u)− λK(u),

and (provided that δK/δu 6= 0, which is the case since ru 6= 0)
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J(u+ εh)
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K(u+ εh)

∣∣∣∣
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= 0 for every h ∈ C∞([a, b]).

• Using integration by parts, we get that

d
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J(u+ εh)
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=

∫ b

a

{pu′h′ + quh} dx

= [pu′h]
b
a +

∫ b

a

{−(pu′)′ + qu}h dx,

d
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K(u+ εh)
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=

∫ b

a

ruh dx.



• It follows that

[pu′h]
b
a +

∫ b

a

{−(pu′)′ + qu− λru}h dx = 0 for every h ∈ C∞([a, b]).

• First, considering compactly supported h with h(a) = 0, h(b) = 0, we
get that∫ b

a

{−(pu′)′ + qu− λru}h dx = 0 for every h ∈ C∞c ([a, b]).

Since the integrand is a continuous function, the fundamental lemma
of the calculus of variations implies that

−(pu′)′ + qu− λru = 0 a < x < b.

• It then follows that

[pu′h]
b
a = 0 for every h ∈ C∞([a, b]).

Choosing h such that h(a) = 1, h(b) = 0 or h(a) = 0, h(b) = 1 we find
that u satisfies the natural boundary conditions

u′(a) = 0, u′(b) = 0.



2. Solve the following IBVP for u(x, t) by the method of separation of vari-
ables:

utt − uxx + u = 0, 0 < x < 1, t > 0

ux(0, t) = 0, ux(1, t) = 0,

u(x, 0) = f(x), ut(x, 0) = 0.

Solution.

• Looking for separated solutions u(x, t) = F (x)G(t), we get that

G′′

G
− F ′′

F
+ 1 = 0.

Introducing a separation constant λ = −F ′′/F , we find that F satisfies
the eigenvalue problem

−F ′′ = λF, F ′(0) = 0, F ′(1) = 0,

and G satisfies the ODE

G′′ + (λ+ 1)G = 0.

• The eigenvalues and eigenfunctions are

λ = n2π2, F (x) = cosnπx n = 0, 1, 2, . . .

• The corresponding solution for G is

G(t) = A cosωnt+B sinωnt ωn =
√
n2π2 + 1.

Since ut = 0 at t = 0, we take B = 0.

• Superposing separated solutions, we get that

u(x, t) =
∞∑
n=0

an cos(ωnt) cos(nπx).

where the coefficients an are chosen so that

f(x) =
∞∑
n=0

an cos(nπx).

• By orthogonality, it follows that

a0 =

∫ 1

0

f(x) dx, an = 2

∫ 1

0

f(x) cos(nπx) dx n ≥ 1.



3. Suppose that f : [0, 1] → R is a continuous function and the boundary-
value problem

−u′′ = π2u+ f(x),

u(0) = 0, u(1) = 0

has a solution u ∈ C2([0, 1]). Show that f must satisfy the solvability condi-
tion ∫ 1

0

f(x) sin(πx) dx = 0.

Solution.

• Multiplying the ODE by sin(πx), integrating over [0, 1], and integrating
by parts, we get that∫ 1

0

f sin(πx) dx = −
∫ 1

0

(u′′ + π2u) sin(πx) dx

= [πu cos(πx)− u′ sin(πx)]
1
0 −

∫ 1

0

u
{

[sin(πx)]′′ + π2 sin(πx)
}
dx

= 0.

The boundary terms vanish since both u and sin(πx) are zero at x =
0, 1.

Remark. In general, if A is a self-adjoint operator on a Hilbert space with
eigenvalue λ ∈ R and eigenfunction φ, then a necessary condition for the
equation Au = λu + f to have a solution for u is that f is orthogonal to φ,
since

〈f, φ〉 = 〈(A− λI)u, φ〉 = 〈u, (A− λI)φ〉 = 0.



4. Let A : D(A) ⊂ L2(0, 2π)→ L2(0, 2π) be the operator

A = −i d
dx

+ x,

with periodic boundary conditions

D(A) =
{
u : [0, 2π]→ C : u ∈ H1(0, 2π), u(0) = u(2π)

}
(a) Show that A is self-adjoint.

(b) Compute the eigenvalues and eigenfunctions of A.

Solution.

• (a) For u, v ∈ D(A), we have

〈u,Av〉 =

∫ 2π

0

ū(−iv′ + xv) dx

= −i [ūv]2π0 +

∫ 2π

0

{iū′ + xū} v dx

=

∫ 2π

0

{
−iu′ + xu

}
v dx

= 〈Au, v〉

The boundary terms vanish since both u and v satisfy periodic bound-
ary conditions.

• (b) The eigenvalue problem for A is

−iu′ + xu = λu, u(0) = u(2π).

Solving the ODE by separating varaibles, we get that

−i
∫
du

u
=

∫
(λ− x) dx

so log u = i(λx− x2/2) + C, and a nonzero solution is

u(x) = eix(λ−x/2).



• This function satisfies the periodic boundary conditions if

1 = e2πi(λ−π),

which means that λ− π = n for some n ∈ Z.

• It follows that the eigenvalues λ = λn and eigenfunctions u = un are
given by

λn = n+ π, un(x) = ei(nx+πx−x
2/2) n ∈ Z.


