Midterm: Solutions

Math 207B, Winter 2016

1. Let $p, q, r:[a, b] \rightarrow \mathbb{R}$ be smooth functions with $p, r>0$. Suppose that $u:[a, b] \rightarrow \mathbb{R}$ is a smooth extremal over all functions in $C^{1}([a, b])$ of the functional

$$
J(u)=\frac{1}{2} \int_{a}^{b}\left\{p(x) u^{\prime 2}(x)+q(x) u^{2}(x)\right\} d x
$$

subject to the constraint $K(u)=1$, where

$$
K(u)=\frac{1}{2} \int_{a}^{b} r(x) u^{2}(x) d x
$$

Show that u is an eigenfunction of the weighted Sturm-Liouville eigenvalue problem

$$
\begin{aligned}
& -\left(p u^{\prime}\right)^{\prime}+q u=\lambda r u \quad a<x<b \\
& u^{\prime}(a)=0, \quad u^{\prime}(b)=0
\end{aligned}
$$

Solution.

- Introduce a Lagrange multiplier λ. Then u is an unconstrained extremal of

$$
I(u, \lambda)=J(u)-\lambda K(u)
$$

and (provided that $\delta K / \delta u \neq 0$, which is the case since $r u \neq 0$)

$$
\left.\frac{d}{d \epsilon} J(u+\epsilon h)\right|_{\epsilon=0}-\left.\lambda \frac{d}{d \epsilon} K(u+\epsilon h)\right|_{\epsilon=0}=0 \quad \text { for every } h \in C^{\infty}([a, b])
$$

- Using integration by parts, we get that

$$
\begin{aligned}
\left.\frac{d}{d \epsilon} J(u+\epsilon h)\right|_{\epsilon=0} & =\int_{a}^{b}\left\{p u^{\prime} h^{\prime}+q u h\right\} d x \\
& =\left[p u^{\prime} h\right]_{a}^{b}+\int_{a}^{b}\left\{-\left(p u^{\prime}\right)^{\prime}+q u\right\} h d x \\
\left.\frac{d}{d \epsilon} K(u+\epsilon h)\right|_{\epsilon=0} & =\int_{a}^{b} r u h d x .
\end{aligned}
$$

- It follows that

$$
\left[p u^{\prime} h\right]_{a}^{b}+\int_{a}^{b}\left\{-\left(p u^{\prime}\right)^{\prime}+q u-\lambda r u\right\} h d x=0 \quad \text { for every } h \in C^{\infty}([a, b])
$$

- First, considering compactly supported h with $h(a)=0, h(b)=0$, we get that

$$
\int_{a}^{b}\left\{-\left(p u^{\prime}\right)^{\prime}+q u-\lambda r u\right\} h d x=0 \quad \text { for every } h \in C_{c}^{\infty}([a, b])
$$

Since the integrand is a continuous function, the fundamental lemma of the calculus of variations implies that

$$
-\left(p u^{\prime}\right)^{\prime}+q u-\lambda r u=0 \quad a<x<b
$$

- It then follows that

$$
\left[p u^{\prime} h\right]_{a}^{b}=0 \quad \text { for every } h \in C^{\infty}([a, b])
$$

Choosing h such that $h(a)=1, h(b)=0$ or $h(a)=0, h(b)=1$ we find that u satisfies the natural boundary conditions

$$
u^{\prime}(a)=0, \quad u^{\prime}(b)=0 .
$$

2. Solve the following IBVP for $u(x, t)$ by the method of separation of variables:

$$
\begin{aligned}
& u_{t t}-u_{x x}+u=0, \quad 0<x<1, \quad t>0 \\
& u_{x}(0, t)=0, \quad u_{x}(1, t)=0 \\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=0 .
\end{aligned}
$$

Solution.

- Looking for separated solutions $u(x, t)=F(x) G(t)$, we get that

$$
\frac{G^{\prime \prime}}{G}-\frac{F^{\prime \prime}}{F}+1=0
$$

Introducing a separation constant $\lambda=-F^{\prime \prime} / F$, we find that F satisfies the eigenvalue problem

$$
-F^{\prime \prime}=\lambda F, \quad F^{\prime}(0)=0, \quad F^{\prime}(1)=0
$$

and G satisfies the ODE

$$
G^{\prime \prime}+(\lambda+1) G=0 .
$$

- The eigenvalues and eigenfunctions are

$$
\lambda=n^{2} \pi^{2}, \quad F(x)=\cos n \pi x \quad n=0,1,2, \ldots
$$

- The corresponding solution for G is

$$
G(t)=A \cos \omega_{n} t+B \sin \omega_{n} t \quad \omega_{n}=\sqrt{n^{2} \pi^{2}+1}
$$

Since $u_{t}=0$ at $t=0$, we take $B=0$.

- Superposing separated solutions, we get that

$$
u(x, t)=\sum_{n=0}^{\infty} a_{n} \cos \left(\omega_{n} t\right) \cos (n \pi x)
$$

where the coefficients a_{n} are chosen so that

$$
f(x)=\sum_{n=0}^{\infty} a_{n} \cos (n \pi x)
$$

- By orthogonality, it follows that

$$
a_{0}=\int_{0}^{1} f(x) d x, \quad a_{n}=2 \int_{0}^{1} f(x) \cos (n \pi x) d x \quad n \geq 1 .
$$

3. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function and the boundaryvalue problem

$$
\begin{gathered}
-u^{\prime \prime}=\pi^{2} u+f(x), \\
u(0)=0, \quad u(1)=0
\end{gathered}
$$

has a solution $u \in C^{2}([0,1])$. Show that f must satisfy the solvability condition

$$
\int_{0}^{1} f(x) \sin (\pi x) d x=0
$$

Solution.

- Multiplying the ODE by $\sin (\pi x)$, integrating over $[0,1]$, and integrating by parts, we get that

$$
\begin{aligned}
\int_{0}^{1} f & \sin (\pi x) d x=-\int_{0}^{1}\left(u^{\prime \prime}+\pi^{2} u\right) \sin (\pi x) d x \\
& =\left[\pi u \cos (\pi x)-u^{\prime} \sin (\pi x)\right]_{0}^{1}-\int_{0}^{1} u\left\{[\sin (\pi x)]^{\prime \prime}+\pi^{2} \sin (\pi x)\right\} d x \\
& =0
\end{aligned}
$$

The boundary terms vanish since both u and $\sin (\pi x)$ are zero at $x=$ 0,1 .

Remark. In general, if A is a self-adjoint operator on a Hilbert space with eigenvalue $\lambda \in \mathbb{R}$ and eigenfunction ϕ, then a necessary condition for the equation $A u=\lambda u+f$ to have a solution for u is that f is orthogonal to ϕ, since

$$
\langle f, \phi\rangle=\langle(A-\lambda I) u, \phi\rangle=\langle u,(A-\lambda I) \phi\rangle=0
$$

4. Let $A: D(A) \subset L^{2}(0,2 \pi) \rightarrow L^{2}(0,2 \pi)$ be the operator

$$
A=-i \frac{d}{d x}+x
$$

with periodic boundary conditions

$$
D(A)=\left\{u:[0,2 \pi] \rightarrow \mathbb{C}: u \in H^{1}(0,2 \pi), u(0)=u(2 \pi)\right\}
$$

(a) Show that A is self-adjoint.
(b) Compute the eigenvalues and eigenfunctions of A.

Solution.

- (a) For $u, v \in D(A)$, we have

$$
\begin{aligned}
\langle u, A v\rangle & =\int_{0}^{2 \pi} \bar{u}\left(-i v^{\prime}+x v\right) d x \\
& =-i[\bar{u} v]_{0}^{2 \pi}+\int_{0}^{2 \pi}\left\{i \bar{u}^{\prime}+x \bar{u}\right\} v d x \\
& =\int_{0}^{2 \pi}\left\{\overline{-i u^{\prime}+x u}\right\} v d x \\
& =\langle A u, v\rangle
\end{aligned}
$$

The boundary terms vanish since both u and v satisfy periodic boundary conditions.

- (b) The eigenvalue problem for A is

$$
-i u^{\prime}+x u=\lambda u, \quad u(0)=u(2 \pi) .
$$

Solving the ODE by separating varaibles, we get that

$$
-i \int \frac{d u}{u}=\int(\lambda-x) d x
$$

so $\log u=i\left(\lambda x-x^{2} / 2\right)+C$, and a nonzero solution is

$$
u(x)=e^{i x(\lambda-x / 2)} .
$$

- This function satisfies the periodic boundary conditions if

$$
1=e^{2 \pi i(\lambda-\pi)},
$$

which means that $\lambda-\pi=n$ for some $n \in \mathbb{Z}$.

- It follows that the eigenvalues $\lambda=\lambda_{n}$ and eigenfunctions $u=u_{n}$ are given by

$$
\lambda_{n}=n+\pi, \quad u_{n}(x)=e^{i\left(n x+\pi x-x^{2} / 2\right)} \quad n \in \mathbb{Z} .
$$

