Problem set 1
Math 207B, Winter 2016

Due: Fri., Jan. 22

1. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(0,0)=0$ and

$$
f(x, y)=\frac{x y^{3}}{x^{2}+y^{6}} \quad \text { if }(x, y) \neq(0,0)
$$

(a) Show that the directional derivatives of f at $(0,0)$ exist in every direction. What is its Gâteaux derivative at $(0,0)$?
(b) Show that f is not Fréchet differentiable at $(0,0)$. (Hint. A Fréchet differentiable function must be continuous.)
2. Define $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)=x^{2}+y^{2}, \quad g(x, y)=(y-1)^{3}-x^{2} .
$$

Find the minimum value of $f(x, y)$ subject to the constraint $g(x, y)=0$. Show that there does not exist any constant λ such that $\nabla f=\lambda \nabla g$ at some point $(x, y) \in \mathbb{R}^{2}$. Why does the method of Lagrange multipliers fail in this example?
3. Derive the Euler-Lagrange equation for a functional of the form

$$
J(u)=\int_{a}^{b} F\left(x, u, u^{\prime}, u^{\prime \prime}\right) d x
$$

What are the natural boundary conditions for this functional?
4. A curve $y=u(x)$ with $a \leq x \leq b, u(x)>0$, and $u(a)=u_{0}, u(b)=u_{1}$ is rotated about the x-axis. Find the curve that minimizes the area of the surface of revolution,

$$
J(u)=\int_{a}^{b} u \sqrt{1+\left(u^{\prime}\right)^{2}} d x
$$

5. Let X be the space of smooth functions $u:[0,1] \rightarrow \mathbb{R}$ such that $u(0)=0$, $u(1)=0$. Define functionals $J, K: X \rightarrow \mathbb{R}$ by

$$
J(u)=\frac{1}{2} \int_{0}^{1}\left(u^{\prime}\right)^{2} d x, \quad K(u)=\frac{1}{2} \int_{0}^{1} u^{2} d x
$$

(a) Introduce a Lagrange multiplier and write down the Euler-Lagrange equation for extremals in X of the functional $J(u)$ subject to the constraint $K(u)=1$.
(b) Solve the eigenvalue problem in (a) and find all of the extremals. Which one minimizes $J(u)$?
6. (a) Make a change of variable $x=\phi(t), v(t)=u(\phi(t))$, where $\phi^{\prime}(t)>0$, in the functional

$$
J(u)=\int_{a}^{b} F\left(x, u, u^{\prime}\right) d x
$$

Show that $J(u)=K(v)$ where $K(v)$ has the form

$$
K(v)=\int_{c}^{d} G\left(t, v, v^{\prime}\right) d t
$$

and express G in terms of F and ϕ.
(b) Show that the Euler-Lagrange equation for $K(v)$ is the same as what you get by changing variables in the Euler-Lagrange equation for $J(u)$.

