
Problem set 1: Solutions

Math 207B, Winter 2016

1. Define f : R2 → R by f(0, 0) = 0 and

f(x, y) =
xy3

x2 + y6
if (x, y) 6= (0, 0).

(a) Show that the directional derivatives of f at (0, 0) exist in every direction.
What is its Gâteaux derivative at (0, 0)?

(b) Show that f is not Fréchet differentiable at (0, 0). (Hint. A Fréchet
differentiable function must be continuous.)

Solution.

• (a) The directional derivative of f at (0, 0) in the direction (h, k) 6=
(0, 0) is

df(0, 0; h, k) =
d

dǫ
f(ǫh, ǫk)

∣

∣

∣

∣

ǫ=0

= lim
ǫ→0

(

f(ǫh, ǫk)− f(0, 0)

ǫ

)

= lim
ǫ→0

(

ǫhk3

h2 + ǫ4k6

)

= 0.

So all of the directional derivatives exist and df(0, 0; h, k) = 0.

• (b) If f : Rn → R is Fréchet differentiable at ~x ∈ R
n, then it follows

directly from the definition that f(~x + ~h) → f(~x) as ~h → 0, so f is
continuous at ~x.

• On the curve x = t3, y = t, we have f(t3, t) = 1/2 for t 6= 0, so
f(t3, t) 6→ 0 as t → 0. It follows that f is not continuous at (0, 0) and
therefore f is not Fréchet differentiable at (0, 0).



2. Define f, g : R2 → R by

f(x, y) = x2 + y2, g(x, y) = (y − 1)3 − x2.

Find the minimum value of f(x, y) subject to the constraint g(x, y) = 0.
Show that there does not exist any constant λ such that ∇f = λ∇g at some
point (x, y) ∈ R

2. Why does the method of Lagrange multipliers fail in this
example?

Solution.

• On the curve g(x, y) = 0, we have y = 1+ x2/3 ≥ 1, so f(x, y) ≥ 1. On
the other hand, f(0, 1) = 1 and g(0, 1) = 0, so the minimum value of
f(x, y) is 1, attained at (x, y) = (0, 1).

• The Lagrange-multiplier-equations ∇f = λ∇g are

2x = −2λx, 2y = 3λ(y − 1)2.

• The first equation is satisfied if either x = 0 and λ is arbitrary, or
λ = −1. If x = 0, then the constraint g(x, y) = 0 implies that y = 1,
in which case the second equation does not hold for any value of λ.

• On the other hand, if λ = −1, then 3y2 − 4y + 3 = 0, which implies
that y = (2±

√
−5)/3, so there are no real-valued solutions for y.

• The Lagrange-multiplier method fails because ∇g = 0 at the point
(x, y) = (0, 1) where f attains its minimum on g = 0. As a result, the
curve g(x, y) = 0 is not smooth with a well-defined normal vector at
that point (see figure).
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3. Derive the Euler-Lagrange equation for a functional of the form

J(u) =

∫ b

a

F (x, u, u′, u′′) dx.

What are the natural boundary conditions for this functional?

Solution.

• Computing the directional derivative of J at u in the direction φ, and
using integration by parts, we get that

dJ(u;φ) =
d

dǫ

∫ b

a

F (x, u+ ǫφ, u′ + ǫφ′, u′′ + ǫφ′′) dx

∣

∣

∣

∣

ǫ=0

=

∫ b

a

{Fu(x, u, u
′, u′′)φ+ Fu′(x, u′, u′′)φ′ + Fu′′(x, u, u′, u′′)φ′′} dx

=

∫ b

a

{

Fu(x, u
′, u′′)− d

dx
Fu′(x, u′, u′′) +

d2

dx2
Fu′′(x, u, u′, u′′)

}

φ dx

+

[

Fu′(x, u, u′, u′′)φ− d

dx
Fu′′(x, u, u′, u′′) · φ+ Fu′′(x, u, u′, u′′)φ′

]b

a

.

• If u is a smooth extremal of J , then dJ(u;φ) = 0 for every φ ∈
C∞

c ([a, b]). In particular, if φ and its derivatives are zero at x = a, b,
then the boundary terms in the integration by parts vanish and

∫ b

a

{

Fu(x, u
′, u′′)− d

dx
Fu′(x, u′, u′′) +

d2

dx2
Fu′′(x, u, u′, u′′)

}

φ dx = 0

for all φ ∈ C∞

c (a, b). The fundamental lemma of the calculus of varia-
tions implies that u satisfies the Euler-Lagrange equation

d2

dx2
Fu′′(x, u, u′, u′′)− d

dx
Fu′(x, u′, u′′)+Fu(x, u

′, u′′) = 0 a < x < b.

• It follows that if φ ∈ C∞

c ([a, b]) is non-zero at x = a, b, then

[

Fu′(x, u, u′, u′′)φ− d

dx
Fu′′(x, u, u′, u′′) · φ+ Fu′′(x, u, u′, u′′)φ′

]b

a

= 0.



Choosing functions φ such that only one of φ(a), φ(b), φ′(a), or φ′(b)
is nonzero, we conclude that the natural boundary conditions for u at
x = a, b are

− d

dx
Fu′′(x, u, u′, u′′) + Fu′(x, u, u′, u′′) = 0, Fu′′(x, u, u′, u′′) = 0.

This gives four natural boundary conditions for the Euler-Lagrange
equation, which is a fourth-order ODE (provided that Fu′′u′′ 6= 0).



4. A curve y = u(x) with a ≤ x ≤ b, u(x) > 0, and u(a) = u0, u(b) = u1

is rotated about the x-axis. Find the curve that minimizes the area of the
surface of revolution,

J(u) =

∫ b

a

u
√

1 + (u′)2 dx.

Solution.

• Since the Lagrangian F (u, u′) = u
√

1 + (u′)2 is independent of x, the
Euler-Lagrange equation for J(u) has the first integral

−u′Fu′ + Fu = c1

where c1 is a constant of integration, which gives

u
√

1 + (u′)2
= c1.

• The solution for u′ is

u′ =

√

u2

c2
1

− 1,

and separation of variables gives
∫

du
√

u2/c2
1
− 1

=

∫

dx.

• Making the substitution u = c1 cosh t, where (cosh t)′ = sinh t and
cosh2 t− sinh2 t = 1, we get that c1t = x+ c2, so

u(x) = c1 cosh

(

x

c1
+ c3

)

.

• We choose the constants c1, c3 so that

u0 = c1 cosh

(

a

c1
+ c3

)

, u1 = c1 cosh

(

b

c1
+ c3

)

.

These algebraic equations might not have a solution for (c1, c3), in
which case there is no smooth curve that gives a minimal surface of
revolution with radius u0 at x = a and radius u1 at x = b.



• For example, consider the case when a = −b, with b > 0, and u0 = u1.
Then c3 = 0 and

u0 = c cosh

(

b

c

)

.

Writing y = u0/c, t = b/c, and m = u0/b, we see that this equation
has a solution for c if

y = cosh t, y = mt.

• The line y = mt is tangent to the curve y = cosh t at t = t0 when
m = m0 (see figure), where

m0t0 = cosh t0, m0 = sinh t0.

• If 0 < m < m0, meaning that u0 < m0b, then the line y = mt does not
intersect the curve y = cosh t, and there are no solutions; if m > m0,
meaning that u0 > m0b, then the line y = mt intersects y = cosh t in
two points, and there are two solutions.

• The critical value of m is given by m0 = sinh t0 where t0 > 0 is the
solution of t0 tanh t0 = 1. The numerical solution of this transcendental
equation is t0 ≈ 1.1997, which gives m0 ≈ 1.5089.
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5. Let X be the space of smooth functions u : [0, 1] → R such that u(0) = 0,
u(1) = 0. Define functionals J,K : X → R by

J(u) =
1

2

∫

1

0

(u′)2 dx, K(u) =
1

2

∫

1

0

u2 dx.

(a) Introduce a Lagrange multiplier and write down the Euler-Lagrange equa-
tion for extremals in X of the functional J(u) subject to the constraint
K(u) = 1.

(b) Solve the eigenvalue problem in (a) and find all of the extremals. Which
one minimizes J(u)?

Solution.

• (a) We have
δJ

δu
= −u′′,

δK

δu
= u,

so the Lagrange-multiplier equation δJ/δu = λδK/δu is

−u′′ = λu, u(0) = 0, u(1) = 0.

• If λ = −k2 < 0, then the general solution of the ODE is

u(x) = c1 cosh x+ c2 sinh x.

The BC u(0) = 0 implies that c1 = 0, and then the BC u(1) = 0 implies
that c2 = 0, so u = 0 and it does not satisfy the constraint K(u) = 1.

• If λ = 0, then u = c1 + c2x, and the BCs again imply that u = 0.

• If λ = k2 > 0, then the general solution of the ODE is

u(x) = c1 cosx+ c2 sin x.

The BC u(0) = 0 implies that c1 = 0, and then the BC u(1) = 0 is
satisfied for c2 6= 0 if sin k = 0.

• Without loss of generality, we can take k = nπ with n = 1, 2, 3, . . . ,
when u(x) = c sin(nπx) and

λ = n2π2.



• The constraint K(u) = 1 is satisfied if

1

2
c2
∫

1

0

sin2(nπx) dx = 1,

or c2/4 = 1, so the constrained extremals are u = ±un where

un(x) = 2 sin(nπx), for n = 1, 2, 3, . . .

• We have

J(un) =
1

2

∫

1

0

4n2π2 cos2(nπx) dx = n2π2.

The minimum of J is π2, attained at u1. For n ≥ 2, the extremals un

are saddle points of J .



6. (a) Make a change of variable x = φ(t), v(t) = u (φ(t)), where φ′(t) > 0,
in the functional

J(u) =

∫ b

a

F (x, u, u′) dx.

Show that J(u) = K(v) where K(v) has the form

K(v) =

∫ d

c

G(t, v, v′) dt

and express G in terms of F and φ.

(b) Show that the Euler-Lagrange equation for K(v) is the same as what you
get by changing variables in the Euler-Lagrange equation for J(u).

Solution.

• By the chain rule

v′(t) =
d

dt
u(φ(t)) = φ′(t)u′(φ(t)).

• Making the change of variables x = φ(t) in the integral for J(u), we
get

J(u) =

∫ d

c

F (φ(t), v(t), v′(t)/φ′(t)) φ′(t)dt

where c = φ(a), d = φ(b). It follows that

G(t, v, v′) = φ′(t)F (φ(t), v, v′/φ′(t)) .

• The Euler-Lagrange equation for K(v) is

− d

dt
Gv′ +Gv = 0.

From the previous expression for G, we have Gv′ = Fu′ and Gv = φ′Fu,
so the Euler-Lagrange equation becomes

− d

dt
Fu′ + φ′(t)Fu = 0.

Since
d

dt
=

dx

dt

d

dx
= φ′(t)

d

dx
,



it follows that

− d

dx
Fu′ + Fu = 0,

which shows that the Euler-Lagrange equation for K(v) is equivalent
to the one for J(u).

Remark. The Euler-Lagrange equations are also invariant under more gen-
eral transformations of the independent and dependent variables. It is often
convenient to obtain equations that are invariant under some group of trans-
formations by deriving them from an invariant Lagrangian. For example,
in relativistic classical field theory, Lorentz-invariant Lagrangians lead to
Lorentz-invariant field equations.


