Problem set 2
Math 207B, Winter 2016

Due: Fri, Jan. 29

1. A particle of mass m with position $\vec{x}(t)$ at time t has potential energy $V(\vec{x})$ and kinetic energy

$$
T=\frac{1}{2} m\left|\vec{x}_{t}\right|^{2}
$$

The action of the particle over times $t_{0} \leq t \leq t_{1}$ is the time-integral of the difference between the kinetic and potential energy:

$$
S(\vec{x})=\int_{t_{0}}^{t_{1}}(T-V) d t
$$

(a) Show that an extremal $\vec{x}(t)$ of S satisfies Newton's second law $\vec{F}=m \vec{a}$ for motion in a conservative force field $\vec{F}=-\nabla V$.
(b) Show that the total energy of the particle $E=T+V$ is a constant independent of time.
2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded region with smooth boundary (so the divergence theorem holds) and $f: \bar{\Omega} \rightarrow \mathbb{R}$ a smooth function. Derive the Euler-Lagrange equation and natural boundary condition that are satisfied by a smooth extremal $u: \bar{\Omega} \rightarrow \mathbb{R}$ of the functional

$$
J(u)=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}-f u\right) d x
$$

3. The transverse displacement at position x and time t of an elastic string vibrating in the (x, y)-plane is given by $y=u(x, t)$, where $a \leq x \leq b$ and $t_{0} \leq t \leq t_{1}$. If the density of the string per unit length is $\rho(x)$ and the tension in the string is a constant T, then (for small displacements) the motion of the string is an extremum of the action

$$
S(u)=\int_{t_{0}}^{t_{1}} \int_{a}^{b}\left(\frac{1}{2} \rho u_{t}^{2}-\frac{1}{2} T u_{x}^{2}\right) d x d t
$$

Derive the Euler-Lagrange equation for $u(x, t)$.
4. The (n-dimensional) area of a surface $y=u(x)$ over a region $\Omega \subset \mathbb{R}^{n}$ is given by

$$
J(u)=\int_{\Omega} \sqrt{1+|\nabla u|^{2}} d x
$$

Find the Euler-Lagrange equation (called the minimal surface equation) that is satisfied by a smooth extremum of this functional.
5. Let $X=\left\{u \in C^{1}([-1,1]): u(-1)=-1, u(1)=1\right\}$, where $C^{1}([a, b])$ denotes the space of continuously differentiable functions on $[a, b]$. Define $J: X \rightarrow \mathbb{R}$ by

$$
J(u)=\int_{-1}^{1} x^{4}\left(u^{\prime}\right)^{2} d x
$$

(a) Show that

$$
\inf _{u \in X} J(u)=0
$$

but $J(u)>0$ for every $u \in X$ (so J does not attain its infimum on X).
(b) What happens when you try to solve the Euler-Lagrange equation for extremals of J ?

