PROBLEM SET 2: SOLUTIONS
Math 207B, Winter 2016

1. A particle of mass m with position Z(¢) at time ¢ has potential energy

V() and kinetic energy

1
T = —m|z,|2.
2m|xt|

The action of the particle over times ¢ty < t < t; is the time-integral of the
difference between the kinetic and potential energy:

S(7) = / Crovya

to

(a) Show that an extremal Z(t) of S satisfies Newton’s second law F' = ma
for motion in a conservative force field F' = —VV.

(b) Show that the total energy of the particle £ = T + V is a constant
independent of time.

Solution.
e (a) The Euler-Lagrange equation for the action

t1 1
S@= [ L@a)d  LEE) = jmiaf - V()
to

_i 8_L _|_8_L—0
dt \ 0z, or

e Using the summation convention, and the Kronecker-d defined by

1 iti=y,
0ij = e
0 ifi#j,

is given by

we have

o|al? 0 ~
|: |ad! :| ‘ = a—a (CLjCLj) = 2aj5ij = 2(11' = [2(1]2‘,

so OF /0%, = mZy, and OF /07 = —VV (Z).



e The Euler-Lagrange equation is
mftt = —VV(f),
which is Newton’s second law.

e (b) Taking the scalar product of the ODE with #;, we get that

mft . ftt = —ft . VV(LE))
It follows that 4

SO
1
§m|ft|2 + V(&) = constant.



2. Let Q C R” be a bounded region with smooth boundary (so the di-
vergence theorem holds) and f : @ — R a smooth function. Derive the
Euler-Lagrange equation and natural boundary condition that are satisfied
by a smooth extremal u : @ — R of the functional

J(u)z/Q(%yvuP—fu) .

Solution.

e For ¢ € C=(9), we have

E J(u + 6¢) |e=0
d

de
=/Q<Vuw—f¢> dx

[ (Vu+ Vo) - (Vut+ Vo) — flu+ e¢>] dn

e=0

e The divergence theorem implies that

| (v vo) do - / V- (6V) — pAu] da
_ —dS / $Au dz.

o If » =0 on 01, then

Gty =— [ Butfods

The fundamental lemma of the calculus of variations implies that an
extremal u, with

d
% J(U + €¢)|5:0 = 0’

for all ¢ satisfies the Euler-Lagrange equation

—Au=f in €.



e For functions ¢ that do not necessarily vanish on the boundary, we
have

d ou
It e6) g = /89 6oL ds.

It follows that the natural boundary condition for an extremal u is the

Neumann condition

%:O on 0f).



3. The transverse displacement at position x and time ¢ of an elastic string
vibrating in the (z,y)-plane is given by y = u(z,t), where a < z < b and
to <t < t;. If the density of the string per unit length is p(x) and the tension
in the string is a constant 7', then (for small displacements) the motion of
the string is an extremum of the action

LA S| 1
S(u) = / / (ﬁpu? — 5Tui> dxdt.
to a

Derive the Euler-Lagrange equation for u(z,t).

Solution.

e For every ¢ € C° ((a,b) x (to,t1)), we have
d t1 b
o S(u+ep)|_o= / / (pusdy — Tup ) dxdt.
to a

e Integrating by parts and using the fact that ¢ = 0 at x = a,b and
t =tg,t1, we get that

d t1 b
7 S(u+e€d)|._o = / / (—puy + Tuy,) ¢ dzdt.
to a

e The fundamental lemma of the calculus of variations then implies that
a smooth extremal u of S satisfies the wave equation

Pty = Ty



4. The (n-dimensional) area of a surface y = u(z) over a region Q2 C R™ is

given by
J(u) = / V14 |Vul?dz.
Q

Find the Euler-Lagrange equation (called the minimal surface equation) that
is satisfied by a smooth extremum of this functional.

Solution.

e Using the divergence theorem, we find for every ¢ € C2°(2) that

d d
e J(u+€p)|._o = 7 /ﬂ V14 |Vu+eVo|2de

e=0

u+eVol?| _, da

1 d
S S———
/Q 2¢/1+ |Vul? de |

B Vu-Vo dr
a1+ |Vul?
Vu
=— | V| —— | ¢dx
/Q («/1+]Vu|2)

e The Euler-Lagrange equation for smooth extremals of J is therefore

v.o[_Ve ) _,
Vv 1+ [Vul?

e Using the summation convention, we can write this equation in com-
ponent form as

Uy, B
(w/l—l—umjumj) | =0



5. Let X = {ue CY([-1,1]) : u(—1) = —1,u(1) = 1}, where C'([a,b]) de-
notes the space of continuously differentiable functions on [a,b]. Define
J: X = Rby

J(u) = /_ 1 a2t (u')? de.

1

(a) Show that
inf J(u) =0,

ueX
but J(u) > 0 for every u € X (so J does not attain its infimum on X).

(b) What happens when you try to solve the Euler-Lagrange equation for
extremals of J7

Solution.
e We have J(u) > 0 for every u € X, so inf J(u) > 0.

e To make J(u) as small as possible, we want to make u’ small except
near x = 0, where v’ can be large.

e In order to do this, let f : R — R be any continuously differentiable,
odd function such that f(x) — 1 as  — oo and

/ 7' f!(r)? de = C < .
0

For example, we could choose f(z) = tanhz.

e If we were to include piecewise smooth functions in X, or functions in
a Sobolev space such as H'(—1,1), we could instead take

-1 if —co<x < —1,
fle) =<Kz if-1<z<l,
1 ifl <z < oo.

e For € > 0, define
RICL)
f(1/e)

Then uf(—1) = —1 and u*(1) =1 so u® € X.




e Making the change of variables = = €t, we have

J(u) = ﬁfo ()] e
= —f(ii)Q /01/E t4f’ (t)2 dt
< 206

fQje)
It follows that J(u¢) — 0 as e — 07, so

inf J(u) = 0.

ueX

o If J(u) =0 and u € C*([-1,1]), then z*(«')? = 0, so v/(x) = 0 except
at © = 0, and then «/(0) = 0 by continuity. It follows that u =
constant, but no constant function satisfies both boundary conditions
for functions in X, so J(u) > 0 for every u € X.

e (b) The Euler-Lagrange equation for J(u) is
—2 (z*/) = 0.

Integrating this ODE once, we get that z%u’ = ¢, where ¢ is a constant
of integration. Integrating again, we get that

Ca
u(r) =c + —
T
where c;, co are constants of integration.

e The boundary conditions imply that ¢ —co = —1, ¢ +¢c2 = 1, so
C1 = 0, Cy = 1.

e The solution of the Euler-Lagrange equation is u(x) = 1/x3, which is
singular at z = 0, so there is no smooth solution.

Remark. The Lagrangian for J(u) is F(z,u') = z*(u')>. When x # 0, the
Lagrangian is a strictly convex function of «’ (with F,, = 2z* > 0), but
strict convexity is lost at x = 0. The nonexistence of a minimizer of J(u) is
associated with this loss of strict convexity.



