Problem set 2: Solutions
 Math 207B, Winter 2016

1. A particle of mass m with position $\vec{x}(t)$ at time t has potential energy $V(\vec{x})$ and kinetic energy

$$
T=\frac{1}{2} m\left|\vec{x}_{t}\right|^{2}
$$

The action of the particle over times $t_{0} \leq t \leq t_{1}$ is the time-integral of the difference between the kinetic and potential energy:

$$
S(\vec{x})=\int_{t_{0}}^{t_{1}}(T-V) d t
$$

(a) Show that an extremal $\vec{x}(t)$ of S satisfies Newton's second law $\vec{F}=m \vec{a}$ for motion in a conservative force field $\vec{F}=-\nabla V$.
(b) Show that the total energy of the particle $E=T+V$ is a constant independent of time.

Solution.

- (a) The Euler-Lagrange equation for the action

$$
S(\vec{x})=\int_{t_{0}}^{t_{1}} L\left(\vec{x}, \vec{x}_{t}\right) d t, \quad L\left(\vec{x}, \vec{x}_{t}\right)=\frac{1}{2} m\left|\vec{x}_{t}\right|^{2}-V(\vec{x})
$$

is given by

$$
-\frac{d}{d t}\left(\frac{\partial L}{\partial \vec{x}_{t}}\right)+\frac{\partial L}{\partial \vec{x}}=0 .
$$

- Using the summation convention, and the Kronecker- δ defined by

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j\end{cases}
$$

we have

$$
\left[\frac{\partial|\vec{a}|^{2}}{\partial \vec{a}}\right]_{i}=\frac{\partial}{\partial a_{i}}\left(a_{j} a_{j}\right)=2 a_{j} \delta_{i j}=2 a_{i}=[2 \vec{a}]_{i},
$$

so $\partial F / \partial \vec{x}_{t}=m \vec{x}_{t}$, and $\partial F / \partial \vec{x}=-\nabla V(\vec{x})$.

- The Euler-Lagrange equation is

$$
m \vec{x}_{t t}=-\nabla V(\vec{x}),
$$

which is Newton's second law.

- (b) Taking the scalar product of the ODE with \vec{x}_{t}, we get that

$$
m \vec{x}_{t} \cdot \vec{x}_{t t}=-\vec{x}_{t} \cdot \nabla V(\vec{x}) .
$$

It follows that

$$
\frac{d}{d t}\left[\frac{1}{2} m \vec{x}_{t} \cdot \vec{x}_{t}+V(\vec{x})\right]=0
$$

so

$$
\frac{1}{2} m\left|\vec{x}_{t}\right|^{2}+V(\vec{x})=\text { constant }
$$

2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded region with smooth boundary (so the divergence theorem holds) and $f: \bar{\Omega} \rightarrow \mathbb{R}$ a smooth function. Derive the Euler-Lagrange equation and natural boundary condition that are satisfied by a smooth extremal $u: \bar{\Omega} \rightarrow \mathbb{R}$ of the functional

$$
J(u)=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}-f u\right) d x
$$

Solution.

- For $\phi \in C^{\infty}(\bar{\Omega})$, we have

$$
\begin{aligned}
& \left.\frac{d}{d \epsilon} J(u+\epsilon \phi)\right|_{\epsilon=0} \\
& \quad=\left.\frac{d}{d \epsilon} \int_{\Omega}\left[\frac{1}{2}(\nabla u+\epsilon \nabla \phi) \cdot(\nabla u+\epsilon \nabla \phi)-f(u+\epsilon \phi)\right] d x\right|_{\epsilon=0} \\
& \quad=\int_{\Omega}(\nabla u \cdot \nabla \phi-f \phi) d x
\end{aligned}
$$

- The divergence theorem implies that

$$
\begin{aligned}
\int_{\Omega}(\nabla u \cdot \nabla \phi) d x & =\int_{\Omega}[\nabla \cdot(\phi \nabla u)-\phi \Delta u] d x \\
& =\int_{\partial \Omega} \phi \frac{\partial u}{\partial n} d S-\int_{\Omega} \phi \Delta u d x
\end{aligned}
$$

- If $\phi=0$ on $\partial \Omega$, then

$$
\left.\frac{d}{d \epsilon} J(u+\epsilon \phi)\right|_{\epsilon=0}=-\int_{\Omega}(\Delta u+f) \phi d x
$$

The fundamental lemma of the calculus of variations implies that an extremal u, with

$$
\left.\frac{d}{d \epsilon} J(u+\epsilon \phi)\right|_{\epsilon=0}=0
$$

for all ϕ satisfies the Euler-Lagrange equation

$$
-\Delta u=f \quad \text { in } \Omega
$$

- For functions ϕ that do not necessarily vanish on the boundary, we have

$$
\left.\frac{d}{d \epsilon} J(u+\epsilon \phi)\right|_{\epsilon=0}=\int_{\partial \Omega} \phi \frac{\partial u}{\partial n} d S
$$

It follows that the natural boundary condition for an extremal u is the Neumann condition

$$
\frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega .
$$

3. The transverse displacement at position x and time t of an elastic string vibrating in the (x, y)-plane is given by $y=u(x, t)$, where $a \leq x \leq b$ and $t_{0} \leq t \leq t_{1}$. If the density of the string per unit length is $\rho(x)$ and the tension in the string is a constant T, then (for small displacements) the motion of the string is an extremum of the action

$$
S(u)=\int_{t_{0}}^{t_{1}} \int_{a}^{b}\left(\frac{1}{2} \rho u_{t}^{2}-\frac{1}{2} T u_{x}^{2}\right) d x d t
$$

Derive the Euler-Lagrange equation for $u(x, t)$.

Solution.

- For every $\phi \in C_{c}^{\infty}\left((a, b) \times\left(t_{0}, t_{1}\right)\right)$, we have

$$
\left.\frac{d}{d \epsilon} S(u+\epsilon \phi)\right|_{\epsilon=0}=\int_{t_{0}}^{t_{1}} \int_{a}^{b}\left(\rho u_{t} \phi_{t}-T u_{x} \phi_{x}\right) d x d t
$$

- Integrating by parts and using the fact that $\phi=0$ at $x=a, b$ and $t=t_{0}, t_{1}$, we get that

$$
\left.\frac{d}{d \epsilon} S(u+\epsilon \phi)\right|_{\epsilon=0}=\int_{t_{0}}^{t_{1}} \int_{a}^{b}\left(-\rho u_{t t}+T u_{x x}\right) \phi d x d t
$$

- The fundamental lemma of the calculus of variations then implies that a smooth extremal u of S satisfies the wave equation

$$
\rho u_{t t}=T u_{x x} .
$$

4. The (n-dimensional) area of a surface $y=u(x)$ over a region $\Omega \subset \mathbb{R}^{n}$ is given by

$$
J(u)=\int_{\Omega} \sqrt{1+|\nabla u|^{2}} d x
$$

Find the Euler-Lagrange equation (called the minimal surface equation) that is satisfied by a smooth extremum of this functional.

Solution.

- Using the divergence theorem, we find for every $\phi \in C_{c}^{\infty}(\Omega)$ that

$$
\begin{aligned}
\left.\frac{d}{d \epsilon} J(u+\epsilon \phi)\right|_{\epsilon=0} & =\left.\frac{d}{d \epsilon} \int_{\Omega} \sqrt{1+|\nabla u+\epsilon \nabla \phi|^{2}} d x\right|_{\epsilon=0} \\
& =\left.\int_{\Omega} \frac{1}{2 \sqrt{1+|\nabla u|^{2}}} \frac{d}{d \epsilon}|\nabla u+\epsilon \nabla \phi|^{2}\right|_{\epsilon=0} d x \\
& =\int_{\Omega} \frac{\nabla u \cdot \nabla \phi}{\sqrt{1+|\nabla u|^{2}}} d x \\
& =-\int_{\Omega} \nabla \cdot\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) \phi d x .
\end{aligned}
$$

- The Euler-Lagrange equation for smooth extremals of J is therefore

$$
\nabla \cdot\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0
$$

- Using the summation convention, we can write this equation in component form as

$$
\left(\frac{u_{x_{i}}}{\sqrt{1+u_{x_{j}} u_{x_{j}}}}\right)_{x_{i}}=0
$$

5. Let $X=\left\{u \in C^{1}([-1,1]): u(-1)=-1, u(1)=1\right\}$, where $C^{1}([a, b])$ denotes the space of continuously differentiable functions on $[a, b]$. Define $J: X \rightarrow \mathbb{R}$ by

$$
J(u)=\int_{-1}^{1} x^{4}\left(u^{\prime}\right)^{2} d x .
$$

(a) Show that

$$
\inf _{u \in X} J(u)=0
$$

but $J(u)>0$ for every $u \in X$ (so J does not attain its infimum on X).
(b) What happens when you try to solve the Euler-Lagrange equation for extremals of J ?

Solution.

- We have $J(u) \geq 0$ for every $u \in X$, so $\inf J(u) \geq 0$.
- To make $J(u)$ as small as possible, we want to make u^{\prime} small except near $x=0$, where u^{\prime} can be large.
- In order to do this, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be any continuously differentiable, odd function such that $f(x) \rightarrow 1$ as $x \rightarrow \infty$ and

$$
\int_{0}^{\infty} x^{4} f^{\prime}(x)^{2} d x=C<\infty
$$

For example, we could choose $f(x)=\tanh x$.

- If we were to include piecewise smooth functions in X, or functions in a Sobolev space such as $H^{1}(-1,1)$, we could instead take

$$
f(x)= \begin{cases}-1 & \text { if }-\infty<x \leq-1 \\ x & \text { if }-1<x<1 \\ 1 & \text { if } 1 \leq x<\infty\end{cases}
$$

- For $\epsilon>0$, define

$$
u^{\epsilon}(x)=\frac{f(x / \epsilon)}{f(1 / \epsilon)}
$$

Then $u^{\epsilon}(-1)=-1$ and $u^{\epsilon}(1)=1$ so $u^{\epsilon} \in X$.

- Making the change of variables $x=\epsilon t$, we have

$$
\begin{aligned}
J\left(u^{\epsilon}\right) & =\frac{2}{\epsilon^{2} f(1 / \epsilon)^{2}} \int_{0}^{1} x^{4}\left[f^{\prime}\left(\frac{x}{\epsilon}\right)\right]^{2} d x \\
& =\frac{2 \epsilon^{3}}{f(1 / \epsilon)^{2}} \int_{0}^{1 / \epsilon} t^{4} f^{\prime}(t)^{2} d t \\
& \leq \frac{2 C \epsilon^{3}}{f(1 / \epsilon)^{2}} .
\end{aligned}
$$

It follows that $J\left(u^{\epsilon}\right) \rightarrow 0$ as $\epsilon \rightarrow 0^{+}$, so

$$
\inf _{u \in X} J(u)=0
$$

- If $J(u)=0$ and $u \in C^{1}([-1,1])$, then $x^{4}\left(u^{\prime}\right)^{2}=0$, so $u^{\prime}(x)=0$ except at $x=0$, and then $u^{\prime}(0)=0$ by continuity. It follows that $u=$ constant, but no constant function satisfies both boundary conditions for functions in X, so $J(u)>0$ for every $u \in X$.
- (b) The Euler-Lagrange equation for $J(u)$ is

$$
-2\left(x^{4} u^{\prime}\right)^{\prime}=0
$$

Integrating this ODE once, we get that $x^{4} u^{\prime}=c$, where c is a constant of integration. Integrating again, we get that

$$
u(x)=c_{1}+\frac{c_{2}}{x^{3}}
$$

where c_{1}, c_{2} are constants of integration.

- The boundary conditions imply that $c_{1}-c_{2}=-1, c_{1}+c_{2}=1$, so $c_{1}=0, c_{2}=1$.
- The solution of the Euler-Lagrange equation is $u(x)=1 / x^{3}$, which is singular at $x=0$, so there is no smooth solution.

Remark. The Lagrangian for $J(u)$ is $F\left(x, u^{\prime}\right)=x^{4}\left(u^{\prime}\right)^{2}$. When $x \neq 0$, the Lagrangian is a strictly convex function of u^{\prime} (with $F_{u^{\prime} u^{\prime}}=2 x^{4}>0$), but strict convexity is lost at $x=0$. The nonexistence of a minimizer of $J(u)$ is associated with this loss of strict convexity.

