
Problem set 2: Solutions
Math 207B, Winter 2016

1. A particle of mass m with position ~x(t) at time t has potential energy
V (~x) and kinetic energy

T =
1

2
m|~xt|2.

The action of the particle over times t0 ≤ t ≤ t1 is the time-integral of the
difference between the kinetic and potential energy:

S(~x) =

∫ t1

t0

(T − V ) dt.

(a) Show that an extremal ~x(t) of S satisfies Newton’s second law ~F = m~a

for motion in a conservative force field ~F = −∇V .

(b) Show that the total energy of the particle E = T + V is a constant
independent of time.

Solution.

• (a) The Euler-Lagrange equation for the action

S(~x) =

∫ t1

t0

L(~x, ~xt) dt, L(~x, ~xt) =
1

2
m|~xt|2 − V (~x)

is given by

− d

dt

(
∂L

∂~xt

)
+
∂L

∂~x
= 0.

• Using the summation convention, and the Kronecker-δ defined by

δij =

{
1 if i = j,

0 if i 6= j,

we have [
∂|~a|2

∂~a

]
i

=
∂

∂ai
(ajaj) = 2ajδij = 2ai = [2~a]i,

so ∂F/∂~xt = m~xt, and ∂F/∂~x = −∇V (~x).



• The Euler-Lagrange equation is

m~xtt = −∇V (~x),

which is Newton’s second law.

• (b) Taking the scalar product of the ODE with ~xt, we get that

m~xt · ~xtt = −~xt · ∇V (~x).

It follows that
d

dt

[
1

2
m~xt · ~xt + V (~x)

]
= 0,

so
1

2
m|~xt|2 + V (~x) = constant.



2. Let Ω ⊂ Rn be a bounded region with smooth boundary (so the di-
vergence theorem holds) and f : Ω → R a smooth function. Derive the
Euler-Lagrange equation and natural boundary condition that are satisfied
by a smooth extremal u : Ω→ R of the functional

J(u) =

∫
Ω

(
1

2
|∇u|2 − fu

)
dx.

Solution.

• For φ ∈ C∞(Ω), we have

d

dε
J(u+ εφ)|ε=0

=
d

dε

∫
Ω

[
1

2
(∇u+ ε∇φ) · (∇u+ ε∇φ)− f(u+ εφ)

]
dx

∣∣∣∣
ε=0

=

∫
Ω

(∇u · ∇φ− fφ) dx

• The divergence theorem implies that∫
Ω

(∇u · ∇φ) dx =

∫
Ω

[∇ · (φ∇u)− φ∆u] dx

=

∫
∂Ω

φ
∂u

∂n
dS −

∫
Ω

φ∆u dx.

• If φ = 0 on ∂Ω, then

d

dε
J(u+ εφ)|ε=0 = −

∫
Ω

(∆u+ f)φ dx.

The fundamental lemma of the calculus of variations implies that an
extremal u, with

d

dε
J(u+ εφ)|ε=0 = 0,

for all φ satisfies the Euler-Lagrange equation

−∆u = f in Ω.



• For functions φ that do not necessarily vanish on the boundary, we
have

d

dε
J(u+ εφ)|ε=0 =

∫
∂Ω

φ
∂u

∂n
dS.

It follows that the natural boundary condition for an extremal u is the
Neumann condition

∂u

∂n
= 0 on ∂Ω.



3. The transverse displacement at position x and time t of an elastic string
vibrating in the (x, y)-plane is given by y = u(x, t), where a ≤ x ≤ b and
t0 ≤ t ≤ t1. If the density of the string per unit length is ρ(x) and the tension
in the string is a constant T , then (for small displacements) the motion of
the string is an extremum of the action

S(u) =

∫ t1

t0

∫ b

a

(
1

2
ρu2

t −
1

2
Tu2

x

)
dxdt.

Derive the Euler-Lagrange equation for u(x, t).

Solution.

• For every φ ∈ C∞c ((a, b)× (t0, t1)), we have

d

dε
S(u+ εφ)|ε=0 =

∫ t1

t0

∫ b

a

(ρutφt − Tuxφx) dxdt.

• Integrating by parts and using the fact that φ = 0 at x = a, b and
t = t0, t1, we get that

d

dε
S(u+ εφ)|ε=0 =

∫ t1

t0

∫ b

a

(−ρutt + Tuxx)φ dxdt.

• The fundamental lemma of the calculus of variations then implies that
a smooth extremal u of S satisfies the wave equation

ρutt = Tuxx.



4. The (n-dimensional) area of a surface y = u(x) over a region Ω ⊂ Rn is
given by

J(u) =

∫
Ω

√
1 + |∇u|2 dx.

Find the Euler-Lagrange equation (called the minimal surface equation) that
is satisfied by a smooth extremum of this functional.

Solution.

• Using the divergence theorem, we find for every φ ∈ C∞c (Ω) that

d

dε
J(u+ εφ)|ε=0 =

d

dε

∫
Ω

√
1 + |∇u+ ε∇φ|2 dx

∣∣∣∣
ε=0

=

∫
Ω

1

2
√

1 + |∇u|2
d

dε
|∇u+ ε∇φ|2

∣∣
ε=0

dx

=

∫
Ω

∇u · ∇φ√
1 + |∇u|2

dx

= −
∫

Ω

∇ ·

(
∇u√

1 + |∇u|2

)
φ dx.

• The Euler-Lagrange equation for smooth extremals of J is therefore

∇ ·

(
∇u√

1 + |∇u|2

)
= 0

• Using the summation convention, we can write this equation in com-
ponent form as (

uxi√
1 + uxjuxj

)
xi

= 0.



5. Let X = {u ∈ C1([−1, 1]) : u(−1) = −1, u(1) = 1} , where C1([a, b]) de-
notes the space of continuously differentiable functions on [a, b]. Define
J : X → R by

J(u) =

∫ 1

−1

x4(u′)2 dx.

(a) Show that
inf
u∈X

J(u) = 0,

but J(u) > 0 for every u ∈ X (so J does not attain its infimum on X).

(b) What happens when you try to solve the Euler-Lagrange equation for
extremals of J?

Solution.

• We have J(u) ≥ 0 for every u ∈ X, so inf J(u) ≥ 0.

• To make J(u) as small as possible, we want to make u′ small except
near x = 0, where u′ can be large.

• In order to do this, let f : R → R be any continuously differentiable,
odd function such that f(x)→ 1 as x→∞ and∫ ∞

0

x4f ′(x)2 dx = C <∞.

For example, we could choose f(x) = tanh x.

• If we were to include piecewise smooth functions in X, or functions in
a Sobolev space such as H1(−1, 1), we could instead take

f(x) =


−1 if −∞ < x ≤ −1,

x if −1 < x < 1,

1 if 1 ≤ x <∞.

• For ε > 0, define

uε(x) =
f(x/ε)

f(1/ε)
.

Then uε(−1) = −1 and uε(1) = 1 so uε ∈ X.



• Making the change of variables x = εt, we have

J(uε) =
2

ε2f(1/ε)2

∫ 1

0

x4
[
f ′
(x
ε

)]2

dx

=
2ε3

f(1/ε)2

∫ 1/ε

0

t4f ′ (t)2 dt

≤ 2Cε3

f(1/ε)2
.

It follows that J(uε)→ 0 as ε→ 0+, so

inf
u∈X

J(u) = 0.

• If J(u) = 0 and u ∈ C1([−1, 1]), then x4(u′)2 = 0, so u′(x) = 0 except
at x = 0, and then u′(0) = 0 by continuity. It follows that u =
constant, but no constant function satisfies both boundary conditions
for functions in X, so J(u) > 0 for every u ∈ X.

• (b) The Euler-Lagrange equation for J(u) is

−2
(
x4u′

)′
= 0.

Integrating this ODE once, we get that x4u′ = c, where c is a constant
of integration. Integrating again, we get that

u(x) = c1 +
c2

x3

where c1, c2 are constants of integration.

• The boundary conditions imply that c1 − c2 = −1, c1 + c2 = 1, so
c1 = 0, c2 = 1.

• The solution of the Euler-Lagrange equation is u(x) = 1/x3, which is
singular at x = 0, so there is no smooth solution.

Remark. The Lagrangian for J(u) is F (x, u′) = x4(u′)2. When x 6= 0, the
Lagrangian is a strictly convex function of u′ (with Fu′u′ = 2x4 > 0), but
strict convexity is lost at x = 0. The nonexistence of a minimizer of J(u) is
associated with this loss of strict convexity.


