Problem set 3

Math 207B, Winter 2016
Due: Fri, Feb. 5

1. Suppose that $u(x)$ is a non-zero solution of the eigenvalue problem

$$
\begin{array}{r}
-u^{\prime \prime}=\lambda u \quad 0<x<1, \\
u(0)=0, \quad u(1)=0 .
\end{array}
$$

Show that

$$
\lambda=\frac{\int_{0}^{1}\left(u^{\prime}\right)^{2} d x}{\int_{0}^{1} u^{2} d x} .
$$

Deduce that every eigenvalue λ is strictly positive.
2. Heat flows in a rod of length L with a heat source $(a>0)$ or $\operatorname{sink}(a<0)$ whose density $a u$ is proportional to the temperature u. Suppose that $u(x, t)$ satisfies the IBVP

$$
\begin{aligned}
& u_{t}=D u_{x x}+a u \quad 0<x<L, \quad t>0, \\
& u(0, t)=0, \quad u(L, t)=0, \\
& u(x, 0)=f(x) .
\end{aligned}
$$

(a) Nondimensionalize the problem, and show that the IBVP can be written in nondimensional form as

$$
\begin{array}{lcr}
u_{t}=u_{x x}+\alpha u & 0<x<1, & t>0 \\
u(0, t)=0, & u(1, t)=0 & t>0 \\
u(x, 0)=f(x) & 0<x<1
\end{array}
$$

where α is a suitable nondimensional parameter. Give a physical interpretation of α.
(b) Solve the IBVP in (a) by the method of separation of variables.
(c) How does your solution behave as $t \rightarrow \infty$? For what values of α does $u(x, t) \rightarrow 0$ as $t \rightarrow \infty$? What happens for larger values of α ? Give a physical explanation of this behavior in terms of the thermal energy.
3. Solve the following eigenvalue problem for the linear operator $-d^{2} / d x^{2}$ with Neumann BCs:

$$
\begin{gathered}
-u^{\prime \prime}=\lambda u \quad 0<x<1 \\
u^{\prime}(0)=0, \\
u^{\prime}(1)=0
\end{gathered}
$$

(a) Find the eigenvalues $\lambda=\lambda_{n}$, where $n=0,1,2,3, \ldots$, and the corresponding eigenfunctions $u_{n}(x)$.
(b) Show that the eigenfunctions can be normalized so that

$$
\int_{0}^{1} u_{m}(x) u_{n}(x) d x= \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

(c) Does your argument in Problem 1 that $\lambda \neq 0$ work in this case?
4. (a) Solve the following IBVP by the method of separation of variables

$$
\begin{array}{lrr}
u_{t}=u_{x x} & 0<x<1, & t>0 \\
u_{x}(0, t)=0, & u_{x}(1, t)=0 & t>0 \\
u(x, 0)=f(x) & 0<x<1 . &
\end{array}
$$

(b) How does your solution behave as $t \rightarrow \infty$?
(c) Show directly from the IBVP in (a) that

$$
\int_{0}^{1} u(x, t) d x=\int_{0}^{1} f(x) d x \quad \text { for all } t \geq 0
$$

Is this result consistent with your answer in (b)? Give a physical explanation of the long-time behavior of $u(x, t)$.

