
Problem set 3: Solutions
Math 207B, Winter 2016

1. Suppose that u(x) is a non-zero solution of the eigenvalue problem

−u′′ = λu 0 < x < 1,

u(0) = 0, u(1) = 0.

Show that

λ =

∫ 1

0
(u′)2 dx∫ 1

0
u2 dx

.

Deduce that every eigenvalue λ is strictly positive.

Solution.

• Multiplying the ODE by u and integrating the result over [0, 1], we get
that

−
∫ 1

0

uu′′ dx = λ

∫ 1

0

u2 dx.

Integrating by parts and using the boundary conditions, we have

−
∫ 1

0

uu′′ dx = − [uu′]
1
0 +

∫ 1

0

(u′)2 dx =

∫ 1

0

(u′)2 dx,

and the result follows.

• The expression for λ shows that λ ≥ 0. Moreover, if λ = 0, then∫ 1

0

(u′)2 dx = 0

so u′ = 0 (assuming that u′ is continuous) and therefore u = constant.
The boundary conditions then imply that u = 0, so we must have
λ > 0.

• To explain the previous calculation in more general terms, we can write
the positive, self-adjoint operator A = −d2/dx2 as A = D∗D where the
skew-adjoint operator D = d/dx with Dirichlet boundary conditions
has L2-adjoint D∗ = −d/dx. If Au = λu, then

λ =
〈u,Au〉
〈u, u〉

, 〈u,Au〉 = 〈u,D∗Du〉 = 〈Du,Du〉 ≥ 0,

and λ = 0 only if Du = 0.



2. Heat flows in a rod of length L with a heat source (a > 0) or sink (a < 0)
whose density au is proportional to the temperature u. Suppose that u(x, t)
satisfies the IBVP

ut = Duxx + au 0 < x < L, t > 0,

u(0, t) = 0, u(L, t) = 0,

u(x, 0) = f(x).

(a) Nondimensionalize the problem, and show that the IBVP can be written
in nondimensional form as

ut = uxx + αu 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0 t > 0,

u(x, 0) = f(x) 0 < x < 1,

where α is a suitable nondimensional parameter. Give a physical interpreta-
tion of α.

(b) Solve the IBVP in (a) by the method of separation of variables.

(c) How does your solution behave as t → ∞? For what values of α does
u(x, t)→ 0 as t→∞? What happens for larger values of α? Give a physical
explanation of this behavior in terms of the thermal energy.

Solution.

• (a) Let Θ be a typical value of the initial data f(x), and define

x̄ =
x

L
, t̄ =

Dt

L2
, u(x, t) = Θū(x̄, t̄).

Then

∂x =
1

L
∂x̄, ∂t =

D

L2
∂t̄.

After changing variables, we get the nondimensionalized problem with
a nondimensionalized initial condition and source-parameter

ū(x̄, 0) =
f(Lx̄)

Θ
, α =

aL2

D
.



• In the absence of diffusion, a typical time-scale for the source term
(ut = au) to lead to exponential growth or decay by a factor of e is
Ts = 1/|a|. A typical time scale for heat to diffuse the length of the rod
is Td = L2/D, so |α| = Td/Ts measures the relative speed of diffusion
and growth or decay due to the source (|α| � 1 means that diffusion
dominates and |α| � 1 means that the source term dominates).

• (b) Looking for separated solutions

u(x, t) = F (x)G(t)

of the PDE, we find that

G′

G
=
F ′′

F
+ α.

Defining a separation constant λ by F ′′/F = −λ (other definitions
would lead to the same final result), we get that

G′ = (α− λ)G, −F ′′ = λF.

The solution for G is
G(t) = G0e

(α−λ)t.

• Imposing the boundary conditions on F , we get the eigenvalue problem

−F ′′ = λF, F (0) = 0, F (1) = 0

whose solutions (up to a constant factor in F ) are

λ = n2π2, F (x) = sin(nπx) n = 1, 2, 3, . . .

• Superposing the separated solutions, we get that

u(x, t) =
∞∑
n=1

bne
(α−n2π2)t sin(nπx).

• The initial condition is satisfied if

f(x) =
∞∑
n=1

bn sin(nπx),

which gives by orthogonality that

bn = 2

∫ 1

0

f(x) sin(nπx) dx



• (c) The solution decays to zero as t→∞ if α < π2 and is unbounded if
α > π2 (provided that b1 6= 0). If α = π2, then the solution approaches
a steady state u(x, t)→ b1 sin(πx).

• Suppose for definiteness that u > 0 inside the rod. If α < π2, then
heat energy diffuses out of the ends of the rod at a faster rate than its
generation by the source inside the rod, and the temperature decays
to zero. If α > π2, then the source generates heat faster than it can
escape and the temperature increases. If α = π2 (and b1 > 0), then
(for large times) the loss of heat through the ends of the rod balances
the generation of heat inside.



3. Solve the following eigenvalue problem for the linear operator −d2/dx2

with Neumann BCs:

−u′′ = λu 0 < x < 1,

u′(0) = 0, u′(1) = 0.

(a) Find the eigenvalues λ = λn, where n = 0, 1, 2, 3, . . . , and the correspond-
ing eigenfunctions un(x).

(b) Show that the eigenfunctions can be normalized so that∫ 1

0

um(x)un(x) dx =

{
1 if m = n

0 if m 6= n

(c) Does your argument in Problem 1 that λ 6= 0 work in this case?

Solution.

• (a) Since the problem is self-adjoint, all eigenvalues are real.

• If λ = −k2 < 0, then the general solution of the ODE is

u(x) = c1 cosh kx+ c2 sinh kx.

The boundary condition u′(0) = 0 implies that c2 = 0 and then the
boundary condition u′(1) = 0 implies that kc1 sinh k = 0, so c1 = 0 and
u = 0, meaning that any λ < 0 is not an eigenvalue.

• If λ = 0, then
u(x) = c1 + c2x.

The boundary condition u′(0) = 0 implies that c2 = 0, and then the
boundary condition u′(1) = 0 is satisfied for any c1, so λ = 0 is an
eigenvalue with eigenfunction u = 1.

• If λ = k2 > 0, then the general solution of the ODE is

u(x) = c1 cos kx+ c2 sin kx.

The boundary condition u′(0) = 0 implies that c2 = 0 and then the
boundary condition u′(1) = 0 implies that kc1 sin k = 0, so c1 = 0
unless k = nπ for some n ∈ N, and λn = n2π2 is an eigenvalue with
eigenfunction un(x) = cos(nπx).



• (b) From the addition formula for cosines, we have

cos(mπx) cos(nπx) dx =
1

2
[cos(m+ n)πx+ cos(m− n)πx] .

If m 6= n, then∫ 1

0

cos(mπx) cos(nπx) dx =
1

2

[
sin(m+ n)πx

(m+ n)π
+

sin(m− n)πx

(m− n)π

]1

0

= 0,

and if m = n, then∫ 1

0

cos2(nπx) dx =

{
1 if n = 0,

1/2 if n ≥ 1.

• It follows that an orthonormal set of eigenfunctions is given by

u0(x) = 1, un(x) =
√

2 cos(nπx) n ≥ 1.

(c) The argument is the same up to the conclusion that u′ = 0 if λ = 0.
In this case, however, a nonzero constant function u = 1 satisfies the
Neumann boundary conditions, so λ = 0 is an eigenvalue.



4. (a) Solve the following IBVP by the method of separation of variables

ut = uxx 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0 t > 0,

u(x, 0) = f(x) 0 < x < 1.

(b) How does your solution behave as t→∞?

(c) Show directly from the IBVP in (a) that∫ 1

0

u(x, t) dx =

∫ 1

0

f(x) dx for all t ≥ 0.

Is this result consistent with your answer in (b)? Give a physical explanation
of the long-time behavior of u(x, t).

Solution.

• (a) If u(x, t) = F (x)G(t) is a separated solution of the PDE, then

F ′′

F
=
G′

G
= −λ,

where λ is a separation constant.

• It follows that G(t) = G0e
−λt and F satisfies the eigenvalue problem

−F ′′ = λF, F ′(0) = 0, F ′(1) = 0,

whose eigenvalues and eigenfunctions are found in the previous ques-
tion. The separated solutions are therefore

u(x, t) = e−n
2π2t cos(nπx), n = 0, 1, 2, 3, . . .

• Superposing the separated solutions, we find that the general solution
of the PDE and the BCs is

u(x, t) = a0 +
∞∑
n=1

ane
−n2π2t cos(nπx).

The IC is satisfied if we choose the an such that

f(x) = a0 +
∞∑
n=1

an cos(nπx),



and orthogonality of the eigenfunctions implies that

a0 =

∫ 1

0

f(x) dx, an = 2

∫ 1

0

f(x) cos(nπx) dx for n ≥ 1.

• (b) As t→∞, the temperature u(x, t) approaches a constant a0.

• (c) Integrating the PDE over 0 ≤ x ≤ 1 and using the boundary
conditions, we get that

d

dt

∫ 1

0

u dx =

∫ 1

0

ut dx =

∫ 1

0

uxx dx = [ux]
x=1
x=0 = 0,

so
∫ 1

0
u(x, t) dx is independent of time and is equal to its initial value

a0 =
∫ 1

0
f dx, which is consistent with the solution obtained by separa-

tion of variables.

• As t→∞, diffusion evens out any temperature variations, so the tem-
perature approaches a constant, uniform state. The ends (and sides) of
the rod are insulated, with zero heat flux −ux, so no heat energy can
escape, and the final constant value of the temperature is the one with
the same energy as the initial state (equal to the average value of the
initial data f).


